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A problem-solving process using the Theory
of Didactical Situations: 500 lockers problem

Abstract: The main focus of this study was to examine the mathematical thinking skills of the
undergraduates in an adidactical situation. Didactical Situations Theory was adopted to explain and
determine the complexity of students’ mathematical thinking. The current case study was conducted
with 16 volunteers, pre-service primary school teachers of mathematics and a task called “500 lockers”
was used to challenge their reasoning process. The data obtained through observation and student
works were analyzed deductively and according to the five stages of adidactical learning described
by Brousseau (2002). One of the main results of the study is that the designed learning environment
with the given problem context provoked participants to make conjectures and provided them with
an opportunity to defend their own hypotheses. Consequently, the implementation of the problem
resulted in invaluable reflections enhancing participants’ mathematical thinking.
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Introduction

Mathematical thinking, which is an essential
skill for effective mathematics education (Nation-
al Council of Teachers of Mathematics [NCTM],
2000) is strictly related to problem solving (Schoe-
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2 This paper is an extended version of a paper presented at the
International Conference for Teaching and Education, held in
Barcelona, Spain, 15-21 June 2015.

nfeld, 1992). Therefore, teachers are advised to cre-
ate an environment which will enhance mathemati-
cal thinking (Eisenhardt, Fisher, Schack, Tassell, &
Thomas, 2011). This is possible when students en-
counter challenging problems (Harel & Sowder,
2005). According to contructivist approach, prob-
lem-solving is an important skill (Terhart, 2003;
Tynjala, 1999; Yevdokimov & Passmore, 2008).
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Learners do not simply mirror and reflect
what they read and the responsibility for learning
falls upon a learner in constructivist environments
(Glasersfeld, 1989). To imply the teacher’s role, in
his Theory of Didactical Situations [TDS] Brous-
seau (2002) states that “Doing mathematics does not
consist only of receiving, learning and sending cor-
rect, relevant (appropriate) mathematical messages”
(p.15). Regarding the development of mental struc-
tures, Cobb (1988) states that teachers have to fa-
cilitate a profound cognitive restructuring and con-
ceptual reorganizations, rather than merely convey-
ing to students information about mathematics. On
the other hand, putting the students’ own efforts to
understand at the center of educational enterprise
(Prawat, 1992), constructivism proposes that learn-
ers knowledge is derived from a meaning-making
search by engaging in a process of constructing indi-
vidual interpretations (Brophy, 2002; Fosnot, 1996;
Resnick, 1989). Hence, it can be claimed that TDS is
very much a constructivist approach to the study of
teaching situations (Artigue, 1994 as cited in Srira-
man & Torner, 2008).

The TDS, developed by Guy Brousseau
(2002), emerged in the second half of the 20" centu-
ry and it has been a trend in mathematics education
for the last two decades. According to this theory,
knowledge is a property of a system constituted by
a subject and a milieu in interaction. The core of the
learning process lies in students’ adaptation to this
milieu. Students have to take responsibility without
relying on teacher’s feedback, which is what Brous-
seau defines as an adidactical situation (Ligozat &
Schubauer-Leoni, 2010).

Brousseau (2002) specifies the responsibility
of students in adidactical situations as follows: “The
student learns by adapting herself to a milieu which
generates contradictions, difficulties and disequilib-
ria, rather as human society does.” (p. 30). There-
fore, the teacher’s task is to arrange situations for
students to discover knowledge and then deperson-
alize it. On the other hand, students’ work consists

of personal discovery followed by depersonalization
(Winslow, 2005). Samaniego and Barrera (1999, p.3)
identify three situations differentiated by Brousseau
(2002) in the teaching process adapting from Bessot
(1994, as cited in Samaniego & Barrera, 1999):

“Non-didactical situation: with respect to
knowledge S, is that situation that is not explicitly
organized to allow the learning of S. For instance, at
the secondary level, all that has to do with operation
with naturals may be considered as a non-didactical
situation.

Didactical situation; with respect to knowl-
edge S, is that situation designed explicitly to en-
courage S. We can consider as didactical all the tasks
done in a classroom with which the teacher intents
to teach S, and with which the student is forced to
learn S.

A-didactical situation: with respect to knowl-
edge S, is that situation that contains all the condi-
tions that permit the student to establish a relation-
ship with S, regardless of the teacher. The actions
that the student does, and the answers and argu-
ments that he/she produces depend on him/her re-
lationship (no completely explicit) with S, i. e. with
the “problem” that he/she must solve or wit the diffi-
culty that she must overcome. In this case, a process
of devolution of responsibility is in action.”

The didactical situation is made up of five
phases which can be summarized briefly as; (i) de-
volution phase where the teacher transfers the re-
sponsibility to the students, (ii) the action phase
where the students come up with new hypotheses
on how to solve the problem, (iii) the formulation
phase where the students articulate their hypothesis
(iv) the validation phase where the hypotheses are
tested for their validity, and finally (v) the institu-
tionalization where the teacher offers possible solu-
tions to the given problem and presents the problem
in different contexts where the earlier solutions are
the basis for understanding (Brousseau, 2002). Rad-
ford (2008) claims that the TDS works on the basis
of these epistemic principles:
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pl: knowledge is the result of the “optimal”
solution to a certain situation or problem.

p2: learning is - in accordance to Piaget’s ge-
netic epistemology - a form of cognitive adapta-
tion.

p3: for every piece of mathematical knowl-
edge there is a family of situations to give it an ap-
propriate meaning.

p4: student autonomy is a necessary condi-
tion for the genuine learning of mathematics.

Apart from the theoretical base of TDS, some
problems may occur within the milieu. In the first
place, the teachers may have problems with imple-
menting group work within the TDS. Davies (2009)
listed some variables affecting group work such as
motivation, tasks given, task complexity, recognition
of effort, the size of the group and the effect of incen-
tives and penalties. Although group work may result
in unexpected failures, the teacher in TDS should
try to organize the milieu to minimize the pitfalls of
the group work. Furthermore, group tasks have to be
evaluated to ensure that they are likely to result in ef-
fective group efforts (Davis, 1999). According to Mi-
chaelson, Fink and Knight (1997), group assignments
should (i) require a high level of individual account-
ability of group members; (ii) require members to dis-
cuss issues and interact; (iii) ensure that members re-
ceive immediate, unambiguous, and meaningful feed-
back; (iv) provide explicit rewards for high levels of
group performance to eliminate or minimize the diffi-
culties that groups can face. When examined closely, it
can be seen that TDS satisfies these conditions.

The TDS constitutes the framework for this
research since the students endeavor to acquire
knowledge on their own and, most importantly,
since exploring how students learn within the pro-
cess, rather than how teachers teach the subject, is
the baseline for the present research. In this context,
this study aims to examine the mathematical think-
ing skills of the students in an adidactical situation
through an inquiry-based problem solving. There-
fore, the study is important in terms of providing a

basis on how to conduct a didactical situation with-
in TDS, shifting the locker problem in a different
context and examining the students’ behaviors in an
environment which requires of them to get involved
in higher thinking processes. In addition, as Srira-
man and English (2010) claim, various theories and
philosophies that have informed and propelled the
field forward should be tested in different contexts
from time to time.

Method

Case study design (Yin, 2003) was used in
the research in which the problem-solving
process of the students was examined. The
participants of the study were 16 (5 male and
11 female) voluntary undergraduate students
of the Primary Mathematics Teaching Program
at the state university in Turkey. An attractive
problem situation was investigated to find out
the mathematical thinking processes of the pre-
service teachers. The problem situation known
as the “locker problem” (Kimani, Olanoff, &
Masingila, 2016), which the participants had
never encountered before, was as follows:

“Assume that your school has 500 students and
500 lockers, one for each student. Both students
and lockers are numbered from 1 to 500. When
all the lockers are closed, the first student walks
down the line and opens the doors of all 500
lockers. The second student closes the doors with
even numbers. The third student changes the
state of every third locker, i.e. if it is open, he/she
closes it; if it is closed, he/she opens it. The fourth
student does the same to every fourth locker, and
the process is repeated with all 500 students. Each
student changes (‘change” means either closing
an open door or opening a closed door) the state
of those lockers numbered with multiple of their
own id number. How many lockers will be open
when all 500 students open or close the doors in
the way described above?”
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During the procedure, 2 researchers worked
together with the four groups of students, each com-
posed of 4 students. The groups were heterogeneous
within themselves and homogeneous among them-
selves according to their academic success level.
Furthermore, the activity was video-taped after the
permission of the participants had been received.
The ideas of different groups were put forward and
an environment for discussion was formed to val-
idate or falsify the expressed ideas. One of the re-
searchers led the activity and discussions, while the
other one was guiding the video camera and taking
the observation notes. The researchers’ notes, video
camera recording, sketches of the groups on the de-
livered papers were used in the analysis. The data
were analyzed by using deductive analysis, in which
the data were analyzed according to an existing
framework (Patton, 2002, p.453). The data analysis
was conducted according to the TDS concepts, i.e.,
the stages of devolution, action, formulation, valida-
tion and institutionalization. Two researchers came
together to compare the analysis results after they
had analyzed the obtained data individually accord-
ing to the themes created previously.

Results and Discussion

The findings obtained from the adidactical
situationare presented, takinginto consideration
the five stages of the milieu.

- 0o "o o o o [ ’
. x X0 X 0 K 0 X
N XX X 0O D
0 x X 0 X \ i
)
O %x O 0 'x % SERTY g
1
OV o x £ W D ‘ i b
( C 0o 0O
s i
xx ) XX d
- I
. | f
|
4 rj X
I y
a

Devolution Stage: At the beginning of the ac-
tivity, the researchers informed the students about
the aim of the practice and important points of the
process. The aforementioned problem was intro-
duced to the students and the expectations from
the groups were stated in order to have an effec-
tive problem-solving process. Hence the transfer of
the task occurred and the researchers let the groups
study on their own.

Action Stage: The students made an effort to
solve the problem in groups after the problem was
introduced. The most important indicator of this
phase was that the students passionately discussed
the possible solutions within the groups and put
forth their strategies. The students mostly tried to
find out a solution by trial and error, instead of sug-
gesting a formal proof. Some of the strategies can be
seen in Figure 1a, 1b, lc.

Formulation Stage: The students presented
formal hypotheses in this stage. The students who
struggled for the solution through trial-and-error
search also made mathematically reasonable and ac-
ceptable deductions in this stage. Three hypotheses
that were thought to be worth discussing were sug-
gested by the groups.

Hypothesis 1: The doors of the lockers num-
bered with 1, 4, 9, 18, 35, 68, 133, 262 are open.

S: Its a pattern having 2" numbers between
each consecutive numbers. For example, there are 2

1
YRR

Figure 1. The strategies to find out the open and closed lockers
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numbers between 1 and 4 (i.e., 2 and 3), 4 numbers
between 4 and 9 (i.e., 5, 6, 7 and 8), etc.

R: How did you come to that solution?

S: This is what we did: We first wrote down
+ for the doors numbered from 1 to 10. Then, we
changed the even numbers with - sign. Then we
changed the multiples of three, four, five and so on.
After those markings, we noticed a pattern. There
were 2 closed doors and 4 closed doors respectively
and we thought that this pattern should go on like
this.

" a L e »
o § J o 5%~ : 3 ~ F - ‘\—'_J’:

& & - - &

Figure 2. The strategy for Hypothesis 1

It can be seen that the students generalized
the pattern they found for 10 lockers by trial and
error for 500 lockers in the wrong way. Without
any intervention regarding this hypothesis, another
group was allowed to express their hypothesis.

Hypothesis 2: The doors of the lockers num-
bered with prime numbers are always closed.

The students first tried to find out whether
there was something going on with prime numbers
or not. So, it was the result of their curiosity with
the primes. Although the students did not come up
with a solution to the problem presented, they made
a valid suggestion.
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Figure 3. The strateqy for Hypothesis 2 [The perfect-
squares are written at the bottom. The primes are listed
on the left side and labeled as “closed”. Also, there is a
note on the right side saying that “the prime numbers
are closed once and never opened again.”]

Hypothesis 3: The doors of the lockers num-
bered with perfect squares (1, 4, 9, 16, ...) are open.

The students put the right solution forward
with this hypothesis. Unlike the ones presenting the
first hypothesis, these students worked with the first
30 or 40 numbers to generalize their reasoning. The
researcher wrote down all the hypotheses suggested
without mentioning the truth or falsity to let the stu-
dents discuss among themselves in the next stage.
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Figure 4. The strategy for Hypothesis 3
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Validation Stage: The students started to dis-
cuss their arguments soon after they shared the hy-
potheses. In this context, the discussion was aimed
at bringing out the results of their thinking process-
es. They were asked to provide justifications for what
they thought about the truth of the statements sug-
gested. Then the groups tried to convince the oth-
er groups about the truth of their arguments. In the
meantime, the researcher addressed some questions
about the deductions of the students.

S: We have to look at the number of the divi-
sors. For example, 10 has four positive divisors (us-
ing the rule for the number of divisors): open, closed,
open, closed (counting the state of the locker four
times).

R: Why do you think that perfect-square-num-
bered lockers will be open?

S: Let’s consider 16 this time. So, it has five di-
visors: open, closed, open, closed, open. Therefore, be-
cause of the odd number of divisors the locker will be
open. If it were even, then it would be closed. Since the
number of divisors for perfect squares is odd, the lock-
ers numbered with perfect squares will be open.

Institutionalization Stage: The hypotheses
which were stated and validated by the students
themselves were expressed again explicitly.

S: We write down the factorization of the num-
ber such as a*.b".c" where a, b, ¢ are primes and k,m,n
are positive integers. Then the number has to have
(k+1).(m+1).(n+1) divisors. The result of this multi-
plication is even, if there is at least one even multi-
plier. The result is odd only if all the multipliers are
odd. So, the integers k, m, n have to be even to get the
odd numbers when we add 1 to each of them. Conse-
quently, since the powers of the multipliers are even,
the numbers of the lockers should be perfect squares
for them to be open.

This explanatory statement of the students is
necessary for them to get to the bottom of the solu-
tion and to understand why the hypothesis works.
So the students are able to generalize the problem
to 1000 lockers, or they can find out which lockers

undergo two operations, i.e., opened just once and
closed just once. These kinds of questions decontex-
tualize the problem and make the students reason
further.

Conclusion and Discussion

Reflections from an adidactical learning situ-
ation organized to determine students’ mathemati-
cal thinking processes have been presented in this
research. Adidactical learning environment is en-
couraging for the students as they learn without
being aware of the fact that they learn (Brousseau,
2002). The research posed a challenging problem to
the students to let them try to analyze the problem.
As Kaplan and Moskowitz (2000) and Torrence and
Wagon (2007) stated, this locker problem is a rich
benchmark problem appearing in both secondary
and university curricula. The students endeavored
to hypothesize the solution and to verify or falsify
these hypotheses. Furthermore, students interacted
with the milieu to reach the conclusion in an addi-
tional trial and error approach. On the other hand,
group discussions gave the students an opportuni-
ty to defend their hypotheses and argue for their
statements on the basis of mathematical reasoning,
as well as to present their mathematical arguments.
Seshaiyer, Suh and Freeman (2012) also concluded
that this problem was accessible to all students and
the use of models, together with acting-out strate-
gies, seemed to engage and motivate students. In
this research, however, students were made to think
abstractly and create their own hypotheses. Lester
and Mau (1993) claim that problem-solving math-
ematics instruction enables pre-service teachers to
understand and appreciate the value of the class-
room climate that allows students to take charge of
their own learning. They also used the locker prob-
lem to evaluate the classroom climate in which the
responsibility lies mostly on students and concluded
that students were motivated and excited to come up
with their own products.
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Calder (2010) and Schoenfeld (1992) state
that problem-solving strategies are fundamental
aspects of mathematical thinking which emerge
through engagement in mathematical practices.
The students make significant gains in mathemat-
ical understanding when teachers carefully choose
tasks that require of students to engage in mathe-
matical thinking and problem-solving. Additionally,
teachers should encourage students’ thinking pro-
cesses by asking questions and encourage reflection
and sense making (Papadopoulos, 2017; Rigelman,
2007). Accordingly, students should justify their
reasoning or refute the hypotheses suggested for an
effective mathematical thinking process (Harel &
Sowder, 2005). Seshaiyer, Suh and Freeman (2012)
state that the locker problem is a great mathemat-
ical puzzle that not only furnishes multiple entry
points to access a variety of mathematical content,
but also encourages the skills such as multiple prob-
lem-solving strategies, multiple representations,
critical thinking, justification and proof, which re-
inforce the Process Standards specified by NCTM
(2000). Lester and Mau (1993) believe that this
type of problem-solving can result in the develop-
ment of social norms in the classroom that are use-
ful for promoting independent problem-solving be-
havior in students by emphasizing the teachers’ role
as a guide who asks probing questions, rather than
leading questions. As a conclusion, it can be asserted
that the students accomplished the five stages of adi-
dactical learning situation willingly and unwitting-
ly. Parallel with the findings of this research, Celik,
Giiler, Oziim-Biilbiil and Ozmen (2015) concluded
that an adidactical learning setting reveals the math-
ematical thinking process of students. The partici-
pants also expressed their opinions about their ex-
perience in the milieu, stating that they enjoyed the
process more than the product and adding that this
experience had broadened their horizons and made
them think about their future practices in the class-
room. Importantly, the pre-service teachers claimed
that experiencing a constructivist, problem-solving
process helped them understand the importance of

developing exploratory thinking skills in their own
students. Furthermore, this form of problem-solv-
ing contexts prepared in advance can help teachers
to create hypothetical learning trajectories as a way
to deal with questions such as “what could this stu-
dent learn next and how could they learn it?” (Emp-
son, 2011, pp. 573-574).

Setting and reinforcing the norms for group
behavior was one of the difficulties encountered in
the resesarch. As TDS has a differentiated view on
the in-classroom work, the students adapted to this
new situation with difficulty. At first, they tried to
solve the problem individually, rather than through
exchanging ideas. Arslan, Tagkin and Kirman Bilgin
(2015) also conclude that individual work yields bet-
ter results than group work in adidactical learning
situations. However, when coordinated appropriate-
ly, teamwork allows for standardization of knowl-
edge among peers; it fosters discussion on differ-
ent solutions and strategies; it develops in students
the ability to communicate on mathematical ide-
as; and it also encourages the development of argu-
ments that validate the statements made in the pro-
cess (Samaniego & Barrera, 1999). The second dif-
ficulty was that the students tried to solve the prob-
lem directly, skipping the task of “conjecturing the
hypotheses” This may be the result of the examina-
tion-focused educational system which seeks the fi-
nal results and does not focus on the process. Third-
ly, generalizing the problem setting, justifying their
hypotheses and convincing their peers was difficult
for the students. Arslan, Baran and Okumus (2011)
admit that students may encounter some difficul-
ties in some stages of an adidactical game. Skemp
(1986) concludes that the process of mathematical
generalization is a sophisticated and powerful activ-
ity. Students have to abstract from a specific situa-
tion to formulate generalizations (Krutetskii, 1976).
Hence, the milieu should include a motivating prob-
lem, letting students get involved in the problem-
solving process and reflect on their thoughts. Srira-
man (2004) drew attention to the fact that the prob-
lem selection is quite important if a teacher wants to
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establish an environment allowing students to have
problem-solving experiences that enable them to
generalize.

This study has implications for both practi-
tioners and researchers. Teachers can organize ac-
tivities that will enable their students to get involved
in higher-level thinking processes through scientific
research process in which they have to make their
own conjectures. Additionally, the students should
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A problem-solving process using the Theory of Didactical Situations: 500 lockers problem

Caxwnn [JTanucmas,
Ynuesepsuiniei Jlyxue, Ilegaiowku dakynitieii

Mycrada I'ynep,
Ynuesepsuinieini Tpadson, Ilegaiowku paxynitieii y Paitiuxy

ITPOLEC PEITABAIbA ITPOBJIEMA IIOMORY TEOPUJE IMTJAKTNYKNX CUTYALIVJA:
ITPOBJIEM 500 OPMAPURA

IIpommpenu pesume

Doxycupajyhn ce na aktuBHO yuemrhe nojemmuama, bpycoosa (Brousseau) Teopwja
mupaktnykux curyanuja [TIC] (2002) naBopm ja ce ,caBrnabuBame MaTeMaTuKe He CacToju
caMo Off IIpMMama, yuerwa ¥ CIamba MCIPaBHUX, pe/leBaHTHUX (ofroBapajyhmx) MaTeMaTM4kmx
nopyka” (ctp. 15). lugakTidka cuTyanuja cacToju ce of reT ¢asa Koje ce yKpaTKo MOTY OIICaTh
Ha cnefiehn HaumH: (1) dasa gesonyyuje y K0joj HaCTAaBHMK IIPEHOCK OATOBOPHOCT Ha YYEHMKE,
(2) dasa genosarva y Kojoj ydeHMLIM M3HOCEe HOBE XMIIOTe3e O TOMe KaKO pelnTy ofpehenn
MareMaTU4Ky npobeM, (3) pasa opmynayuje y K0joj ydeHUIIV apTUKY/INIIY CBOjY XUIIOTe3Y (4)
dasa sanugayuje y Kojoj ce TeCTUpa Ba/baHOCT XMUIIOTe3a U Ha KPajy (5) uHCmuiliyyuoHanusayuja,
y KOjoj HacTaBHMK HYZiu Moryha pelliersa 3a jaTi Ipo6y1eM U IIpeficTaB/ba Ipo6/IeM y pasmiauTuM
KOHTEKCTUMa, IOK CY paHMja pelllemha OCHOBa 3a pasyMeBambe (Brousseau, 2002).

THC npencraB/ba OKBMP 3a OBO MCTpaXKuBambe 3aTO INTO YYeHMIM IOKYILIABajy Ja
CaMOCTA/IHO CTEKHY 3Haibe U, HITO jeé HajBaKHUje, 3aTO IITO je aHaIM3Mparbe HadlMHA Ha KOju
YYEHMIIM yYe Y OBOM IIPOIIECY, a He KAKO HaCTaBHMIIM IIPeJajy MPeMeT, IT0Jla3Ha OCHOBA y HallleM
UCTPaXXMBaIby. Y TOMX KOHTEKCTY, II/b OBOT Pajia je /la ce MCIUTAjy BEIITMHE MaTeMaTHIKOT
MIIUbeHha YYeHMKA Y aiMJAKTUYHO] CUTYaluju KpoO3 pelllaBame IpobreMa 3aCHOBAHOT
Ha IpoMunUbamy. Hamre mcTpakmBame je BaKHO 3aTO IITO IPY’Ka OCHOBY 3a CIpoBoDeme
mupakTiyke curyanmje y okupy TJIC-a mpebaumBamem mpobmema opmapuha y gpyradmjn
KOHTEKCT U MCIUTHBaIbeM ITOHAIIakha yYEHNKA Y OKPY>KeIby KOje 3aXTeBa Off IbIX Jla Ce YK/byde ¥
Ipolece BUIIMX HMBOA Pa3MUIbamba.

Y 0BOj CTyAuju CIy4aja y4ecTBOBAJIO je 16 cTymeHaTa Ha HoOpoBO/BHOj ocHOBU. Ilwb
pemaBama mpobema ca opMapuhnma 6110 je a ce yTBp/ie MaTeMaTUIKM IIPOIeCH Pa3MUII/baba
Oynyhux yumrema. ITpobneM ce cacTojao of OTBapama U 3aTBapama BpaTa cBuUX opMapuha,
OIHOCHO, KOHKpeTHIje, IIPBY CTYAEHT OTBapa cBe opmapuhe, pyru 3aTBapa Bpara opmapuha ca
napHuM 6pojeBuMa, Tpehn Mema cTame cBakor Tpeher opmapuha.

»Konuxo he opmapuha Suitiu oimisopero kaga céux 500 yuenuka owiéopu unu 3aieopu
opmapuhe Ha fope oiucanu HauuH?”

Y HemyKTMBHOj aHa/IM3M, y KOjoj Cy HOfjally aHaIM3MpaHU IpeMa HocTojeheM okBupy,
kopuibheHe cy Oejelike UCTpaKMBaya, BUIEO CHUMIW, CKUIle TPyIla Ha IpefaTyM Ialupuma
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(Patton, 2002, cTp. 443). AHanu3a mofiaTaka je CIpoBefeHa y ckiaany ca nmocraBkama TIC-a, Tj.
dasama meBonynyje, AenoBama, GopMynanuje, Baruganuje 1 MHCTUTYIMOHAIN3aIlje.

®Dasa gesonyyuje: HaBeneHy mpo6eM npefcTaB/beH je CTY/IeHTVIMA U PedeHo je IITa ce Off
rpyma o4eKyje Kako 61 ce mocTurao eeKTUBaH IPolieC peliaBama npobiema.

®asza genosarva: HajBa>XHjU MHANUKATOP y 0BOj a3y 61O je Aa Cy y4eCHULM CTPACTBEHO
pacrnpassbamy 0 MOTYRUM pellleryIMa YHyTap IpyTia M USHOCWU/IM Cy CBOje CTpaTeruje.

Daza popmynucara: Y4eCHUIM KOj) Cy HOKYIIaBa/IM Jja pellle 3a/ilaTak IoMohy npuHImna
THIOTPeIIIKe V1 MCIIPaB/batba TaKohe Cy y 0BOj a3y JOHOCK/IV MaTeMaTHYKI pa3yMHe 1 IPUXBAT/b/BE
3aK/byuke. Ipynie cy nmpepno>xnie Tpu XUIorese.

Xutiotiesa 1: Opmapuhu 03HAaueHu 5poje6uma 1,4, 9, 18, 35, 68, 133, 262 cy oitieoperu.
Xuiiotniesa 2: Opmapuhu odenesxceru upociium Spojesuma ysex cy 3aiti6opeHu.
Xuiiomiesa 3: Opmapuhu oSenexenu dotmniyHum keagpamiuma (1,4, 9, 16, ...) cy oilieoperu.

daza eanugayuje: Y4eCHULN Cy TOYeNN Ja paclpaB/bajy O CBOjUM apryMeHTHMa yop3o
HAaKOH LITO Cy M3HeMM cBoje xmmnoTese. Off BUX ce TPaXWIO Aa 006pasioxe 3aIITO MICIE [ia
Cy BJXOBA pelllera MCIIPaBHA. 3aTUM Cy Tpylle HOKYyIIale Aa yoene jefHe ApyTe fia Cy HBUXOBU
apryMeHTH UCIIPaBHIL.

Dasa uHcimuiyyuonanusayuje: VisHeTe m 06pasno)keHe XMIOTe3e Cy MOTOM IOHOBO
eKCIVIMIMTHO HaBefleHe. Ha Taj HauMH CTYJEHTH MOTy Jia TeHepanu3yjy sajjaTu IpobneM u 10
1000 opmapuha, wm Mory Aa OTKpMjy Ha Koje opMapuhe ce IpuMemyjy /iBe oIepalyje 1 TaKo
JIeKTOHTEKCTYa/M3yjy IpobeM.

YuecHuu cy HacTojany ja XUIIOTETU3Yjy pelleibe U Ja IMOTBPHE M/ ONOBPIHY M3HETe
xunorese. [IltaBuie, ydecHNIM Cy OMIM Yy MHTEPAKIMjU ca 3aaTOM IPOOIeMaTIKOM, a Ja 6u
TOLIIM [0 3aK/by4Ka, KOPUCTWIN Cy U IIPUHIINII y4eha KPO3 TPeIIKe I MCIIPaB/batbe MOrPEIIHOT
pasmunbama. C apyre cTpaHe, TpyIHe AUCKyCUje IPY>XIIe Cy yYeCHUIMMAa IIPUINKY fa OpaHe
CBOje XMIIOTe3e 1 I0Ka3yjy CTaBOBE Ha OCHOBY MaTeMaTH4Kor pacyhuBama, Kao 1 a IpecTaBe
corictBeHe MareMaTnuke aprymente. Cemrajep, Cyx u @puman (Seshaiyer, Suh and Freeman,
2012) cy Takobe sak/byumau ja je oBaj mpobreM IOTOJAH 3a CBe CTyHeHTe U ja Kopuirhemwe
MOfieNIa, Y3 CTpaTeryje y)KUB/baBamba y poOieM, IpUBIaYM M MOTUBMIIE CTyfileHTe. MehyTum, y
OBOM JICTP@)XXVMBakby YUECHNIIM CY MOPA/IM Jla pa3MMUII/bajy allCTPAKTHO U Jia CTBOPE COIICTBEHE
xunoTese. Mo>keMo Jja 3aK/by4MMO Jja Cy YYECHULIM Y ICTPaXXMBamby JOOPOBO/BHO U HEHAMEPHO
OCTBApWIM IIeT CTYIHeBa aAMIAKTUUKOL yuera. YYeCHUIM Cy Takohe M3pasmim MUlUbembe O
CBOM VICKYCTBY y JaTOM OKPY>KelbY, M3jaBMBIIN Jja Cy Y>KMBa/IN y TIPOLeCy pellaBama mpobdiema
BIIIIE HETO Y MICXO/Y, @ HABEJIV CY U Jja je OBO MCKYCTBO IPOIIVIPIIIO BIXOBE BUMKE U HaTepasio
X JIa pa3MUIIIbajy 0 cBoM OyzyheM pajy y y4MOHUIIN.

Kmyune peuu: gugaxiiuuxe cuitiyayuje, agugaxiiiuuke cuiilyayuje, peuiasarve upodnemad,
upobnem 500 opmapuha.




