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Summary: In modern mathematics curricula in primary and secondary education, number
line is an important supervisory tool for understanding many concepts, such as different types of
numbers, equations, and more. The use of the number line is supported by a large number of research-
ers, but there are also studies showing that students find it difficult to use.

Although the concept of number line is important for teaching and there is a great deal of
debate about its use, as far as we know, there are very few systematic studies that examine the episte-
mological development of some components regarding the concept of number line throughout history
and correlate this development by learning this concept from the students. However, there are no
studies that examine the concept of historical development of the number line as a whole or relate it
to student behavior.

In this paper, therefore, the first attempt has been made to examine the overall development
of the concept of number line in the history of mathematics. We have therefore studied the historical
evolution of the concept of number line and divided it into periods, according to the characteristics
of this evolution. It seems that based on the slow mathematical integration of the concept of number
line at the end of the 19th century, but also on some other critical points in the four historical periods
that we have analyzed, some of the difficulties that students encounter when using it are likely to be
epistemological obstacles.
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Introduction

Despite its wide popularity, the use of the
number line in mathematics education is rather
new. It seems to have originated in the 1950s (He-
effer, 2011: 864). Many curricula and research show
the use of the number line as a tool for teaching sev-
eral mathematical concepts such as those presented
below.

In the 1980s the empty number line (ENL)
was introduced in the Netherlands in the framework
of Realistic Mathematics for the early years’ mathe-
matics curriculum (Treffers, 1993). The graduated
and empty number line is used for learning natural
numbers, and for mental operations of addition and
subtraction (Beishuizen, 1999; Murphy, 2011). The
graduated number line and the empty number line
are the appropriate material to assist students in a
process of internalizing strategies in mental calcula-
tions (Murphy, 2008). The graduated number line is
suitable for applying the counting process, which is
directly related to the operation of addition.

Number line, used as a model for the repre-
sentation of fractions, differs from other models —
of set and area - in important features (Bright, Behr,
Post & Wachsmuth, 1988; Petit, Laird & Marsden,
2010). It can be used as a model for teaching per-
centages (Van den Heuvel-Panhuizen, 2003) and
algebra for solving linear equations (Dickinson &
Eade, 2004).

The concept of epistemological obstacle ap-
pears for the first time in philosophy of science in the
works of Bachelard (1938). Brousseau (1976, 1983)
transferred this concept to the science of mathemat-
ics education. Apart from the epistemological obsta-
cle, Brousseau distinguishes between the ontogenic
obstacle which refer to the genetic development of
intelligence and the didactical obstacles which ex-
press the difficulties created by the didactic choic-
es. Concerning the epistemological obstacle, Brous-
seau points out that students’ mistakes are theoreti-
cally not the result of ignorance or chance but rather

an “effect of prior knowledge that was relevant and
had its success, but which now proves to be false, or
simply inadequate” (Brousseau, 1983). Epistemolog-
ical obstacles are not easy to overcome because they
play a crucial role in the construction of knowledge;
however, they are necessary and their rejection must
be arranged.

There have been several investigations relative
to epistemological obstacles, including the research
of numbers, such as the relative numbers in Glaeser
(1981), rational and decimal numbers in Brousseau
(1983), the absolute value in Duroux (1983) and
Thomaidis (1995). There is also research on number
line (mentioned below). This research can be related
to the epistemological obstacles in terms of attempt-
ing to investigate and contrast the difficulties of stu-
dents regarding the number line with the historical
development of this concept.

Concerning a semiotic consideration of num-
ber line, Teppo & van den Heuvel-Panhuizen (2014:
46) point out that number line is part of a ‘semiotic
representation, according to Duval’s theory (Duval,
1999). These authors suggest that for a proper man-
agement of number lines one should identify the
line’s representational components, understand how
these components show and convey information, as
well as note Duval’s statement “show the organiza-
tion of relations between the representational units”
(Duval, 1999: 13).

In this view, however, we must bear in mind
that representational components of number line,
such as geometric straight line and numbers, are
also mathematical objects with important historical
evolution, as we shall see below. According to Du-
val’s (1988) theory, we can say that the number line
results from the articulation of two different regis-
ters of representation, more specifically the geomet-
ric (Euclidean line) and the arithmetic (numbers)
one.

Therefore, the objects that compose the num-
ber line and are articulated between them are math-
ematical ones, which in themselves have a cogni-
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tive state and a historical evolution in the history of
mathematics.

In this study we first attempt to present rele-
vant research and analyze the types of number lines,
and then we present two studies examining compo-
nents of number line, namely the direction and neg-
ative numbers based on historical evolution. Then a
historical analysis of the evolution of number line is
presented. After that, we present the difficulties en-
countered by students in using the number line as a
representation tool, and through the historical evo-
lution of the number line we try to contrast these
difficulties with critical points in its historical evo-
lution.

The different types of number line

Two studies can be found in the litera-
ture, which distinguish the different types of num-
ber lines. The one is by Diezmann, Lowrie & Sug-
ars (2010), while the other is by Teppo & Van den
Heuvel-Panhuizen (2014). The first research distin-
guishes between two types of number lines and the
second among five. We present these distinctions of
the number lines in the two studies further down.

Diezmann, Lowrie & Sugars (2010) distin-
guish between two major types of number lines:
structured number lines, which are the topic of this
paper, and empty number lines. Structured num-
ber lines represent mathematical information by the
placement of marks on a horizontal or vertical line
which has been marked into proportional segments.
Empty number lines are blank lines which students
can use for calculations.

After studying the literature on number line,
Teppo & Van den Heuvel-Panhuizen (2014) found
that there is a large variety of number lines. Thus,
they have led to the creation of a framework for the
classification of number lines, taking into account
(1) the changes in their visual characteristics, (2)
the type of numbers involved, (3) the way in which
numbers and their operations are represented by a

number line and (4) the teaching support provid-
ed by a number line. Based on this framework they
grouped the number lines into five different types
commonly found in mathematics textbooks for pri-
mary and secondary education and teacher educa-
tion programs for these school levels.

The first type is the filled number lines, which
are characterized by equidistant points representing
natural numbers. This type of number line reflects
the order of measurement, facilitates the activities of
counting and placing numbers, as well as exploring
the order of numbers and their relationships.

The second type is empty number lines,
which focuses exclusively on the order of the num-
bers. The Empty Number Line (ENL) is character-
ized by points arranged, not necessarily equidistant
over a section of a line. These points, which rep-
resent numbers, convey information about the re-
lationships associated with the series of numbers.
ENL is used to present the strategies of calculation.
Starting from a freely placed point on such a line,
students can draw a series of jumps to visualize the
steps involved in performing a particular calcula-
tion.

The third type is the directed-length number
lines, which use a concept of number measurement,
where integers are represented by directed length
lines that are determined both by size and direction.
Numbers are displayed as lengths that are measured
from zero. Directed-length number lines support
arithmetic operations with integers and reasoning
about the structure of these operations.

The fourth type is the rational number lines,
where the unit interval is divided into equal inter-
vals and the fractional numbers are represented as
points. These lines display the sequences of meas-
urement of fractional number and support the posi-
tion of fractions and decimal digits. Parallel lines of
rational numbers use sets of parallel lines with dif-
ferent unit spacing to show and justify equivalence
relationships.
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And the fifth type is the proportional and
double number line, where the numbers are rep-
resented by points that are proportional to the giv-
en limit values. It consists of a double scale line and
shows pairs of points. Numbers above and below a
single point represent an analogy used to justify a
particular analogous relationship. They are used to
display the approximate position of real numbers.

We consider that the empty number line is
different from other forms of graduated or struc-
tured number lines, as called by Diezmann, Lowrie
& Sugars (2010). Graduated number lines are close
to the mathematical object that is the axis. They are
one or two lines where different sets of numbers can
appear on them - natural, integer, rational and real
numbers. The numbers are presented in proportion-
al relations to each other and to the unitary inter-
vals. While the empty number line has features that
are different from the mathematical object repre-
senting the axis and it is a representation of it. In the
empty number line, there are no unitary intervals,
measures, and proportional relationships between
the measures. The empty number line is therefore a
representation farther from the mathematical object
than the graduated number line.

According to the above, we distinguish three
types of number lines:

1. The number lines that are mathematical
objects, such as the axis, the representation
of the inequalities in the axis, the vector
line, etc.

2. The graduated or the structured number
lines.

3. The empty number lines.

The first group of number lines or mathe-
matical figures consists of combining lines or vec-
tors with numbers and is used as a representation in
various mathematical concepts such as the axis, il-
lustrations of the inequations in the axis, multiplica-
tion of vector (k.¥), representation of the homothe-
ty in line, etc. Thus, the first group is the representa-
tion of mathematical objects and it is the mathemat-

ical number line like the axis. The second and third
groups are axis representations and are those pre-
sented by Diezmann, Lowrie & Sugars (2010) and
Teppo & Van den Heuvel-Panhuizen (2014) above.

In the present work we will mostly refer to the
second type of number lines.

Other research on the number line

As far as we know, there are two studies (He-
effer, 2011; Thomaidis & Tzanakis, 2007) which car-
ry out a historical and epistemological analysis on
the concept components of the number line. More
specifically, they attempt to correlate the results of
the historical analysis with the teaching processes
and students’ behaviors at school.

Thomaidis & Tzanakis (2007) aimed to in-
vestigate the method of parallelism of the historical
development with the behaviors and teaching in to-
day’s school classrooms and to ask questions con-
cerning this method. For this purpose, the order
relation was the only one to be examined from the
components of the number line. They attempted to
relate the development and function of the knowl-
edge of order relation on the number line, both dur-
ing its historical development and during the teach-
ing and learning of order relation on the number
line with 16-year-old Greek students.

The results of their historical research show
that the modern version of the ordering on the real
number line was introduced only in the 19th cen-
tury, under the influence of the powerful currents
of arithmetizing mathematics where numbers were
conceived as quantities.

The contributions of mathematicians such
as Stifel (1544), Descartes (1637), Euler (1770) and
Cauchy (1821) are presented in an attempt to ex-
plore this historical evolution of the notion of or-
der of real numbers on the number line. The au-
thors also note that “till the end of the 18th century,
there was a strong tendency to reject negative num-
bers by appealing to the ‘quantitative’ conception of
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number” (Pycior, 1987; Schubring, 1986). Concern-
ing the parallelism between historical evolution and
mathematics education these authors conclude that
it has a subtle nature with at least two different as-
pects (metaphorically named “positive” and “nega-
tive”), which are worth further exploration.

In his work Heeffer (2011) argues that the
number line may not be appropriate for the early
teaching of operations involving negative numbers.
Regarding this claim, he presents a number of argu-
ments based on several discussions between philos-
ophers and mathematicians such as Arnauld, Leib-
niz, Wallis, Euler and D’Alembert during the sev-
enteenth and the eighteenth centuries. The author
argues that not only the division between negative
numbers creates problems for the number line, but
also the idea of quantities smaller than anything is
also disputed. Based on historical analysis, the au-
thor supports the introduction of negative num-
bers into education in the context of symbolic op-
erations.

Another research on the number line con-
cerning only the historical context is that of Ama-
deo (2018). In this research the intention was to un-
derstand the historical contexts that configure the
emergence and development of the notion of the
number line. For this purpose, Amadeo used his-
torical textbooks to explore the number line, while
contextualizing its use during its initial develop-
ment period in the seventeenth century until its cur-
rent use as in the nineteenth century. The relevant
analytic geometry textbooks of that time have been
explored, mainly from France and Germany, to un-
derstand when and how this notion was used. This
study concludes that the number line “is a notion
that is initially linked to the practices of analytic ge-
ometry, and that is established as a didactic resource
in the analysis of curves from the algebraic expres-
sion of its variables. That is, the number line arises in
the context of teaching. There is in Fischer’s writing
the first record of this notion only in the nineteenth
century” (Amadeo, 2018: 919).

Purpose of the research and research questions

The main purpose of the present study is to
examine the overall development of the concept of
number line and its constituents in the history of
mathematics and compare this development with
the difficulties of individuals in learning this con-
cept. More specifically the research questions posed
are:

1. Is there a diachronical development in
the history of mathematics on the notion
of number line? Could this historical
evolution be separated into different time
periods?

2. Is it possible to draw some analogy be-
tween this historical evolution of the con-
cept of the number line and the difficulties
encountered by individuals in learning
about this concept?

Method

The methodology we use in the present study
is, on the one hand, historical analysis with a refer-
ence to sources, in order to investigate the historical
evolution of the concept of number line in mathe-
matics. On the other hand, there is a bibliographic
analysis of the studies on the learning and the use of
the number line in education to identify the various
difficulties that students and adults face.

Evolution of number line concept in
the history of mathematics

The evolution of the concept of the number
line was an age-long process which is directly linked
to the evolution of the concept of numbers and ge-
ometry. The idea of matching every single point of a
line to a real number, as we know it today, emerged
at the end of the 19th century. In this evolution we
can distinguish four basic periods:
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Ist period. Mathematics up to Euclid:
Separation of numbers and lines.

The Egyptians, the Babylonians and the Chi-
nese, whose cultures bear a significant mathemat-
ical tradition, developed sophisticated numerical
processes, but there was no reference to a number
line. While they knew important mathematical laws,
could easily handle numbers and geometric shapes,
and could solve difficult arithmetic problems that
required an extraordinary logical ability, the rea-
sons that led them to this mathematical develop-
ment were entirely practical. The mathematics of the
ancient people of the East focused solely on practi-
cal applications and geometrical problems that were
solved within a strictly numerical framework.

However, some of the diagrams on Babylo-
nian plates, such as the famous YBC 7289 plaque,
written around the first third of the second millen-

nium BC, show lines with numbers associated with
the measurements.

Figure 1. The Babylonian plate YBC 7289.

This does not mean, however, that the crea-
tors and users of such plates were operating in the
sense of the number line (Nuiiez, 2011). The identi-

fication of the points of a straight line with numbers
was the result of the practical and algorithmic na-
ture of the mathematics they used (Crossley, 1987).

In Greek mathematics there was a clear sep-
aration between number and magnitude. Numbers
(natural numbers) were simply collections of dis-
crete units that measured a multitude. Magnitude
Size, on the other hand, was usually described as a
continuous quantity divided into parts and is infi-
nitely divisible (Bunt, Jones & Bedient, 1981).

This distinction between number and magni-
tude also resulted in the distinction between arith-
metic and geometry. Arithmetic dealt with the dis-
crete or non-extended quantity, while geometry
dealt with the continuous or extended quantity. It
also imposed a different way of solving and handling
many problems. The Babylonian arithmetic algo-
rithms had to be replaced by a new geometric al-
gebra which did not allow the addition of lines and
areas or areas and volumes. There had to be strict
homogeneity in the formulas used by the Mesopo-
tamian people, which had to be interpreted geomet-
rically (Boyer & Merzbach, 1997). Thus, in ancient
Greece geometry was transformed into a science,
with Euclidean geometry studying abstract mental
objects serving as an example.

The existence of incommensurable magni-
tudes led to the formulation of a new theory by Eu-
doxus presented in the Book V of “The Elements
of Euclid”. The separate interpretation of the ratios
of sizes (proportion) and ratios of integers (frac-
tions) is in line with the level reached by the Greek
thought. Euclid does not seek to define what he
means by magnitude. The theory he built does not
depend on the kind of magnitudes examined and it
is the one that ensures generality (Lemonidis, 1990).

This differentiation may lead to a categori-
zation of the concept of number. On one hand, the
concept of number as a means of measuring objects
(natural numbers) and, on the other, as a means of
measuring quantities (real numbers as presented
today). The Greeks were the first to grasp the two
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forms of the number, perhaps because of their need
to solve the problem of incommensurability. It is a
distinction analogous to the present, with the dif-
ferences between natural numbers when considered
natural or real numbers.

The discovery of irrational numbers in an-
cient Greece was the result of comparisons between
lengths or other quantities and became the focus of
study for a long time. At that time there was no idea
of identifying every point of a line with a number.
The ancient Greeks were also unaware of the neg-
ative numbers (Bunt, Jones, & Bedient, 1981). The
identification of each real number with the points
of a straight line was a gradual conception, which is
primarily associated with the gradual change within
the context of the concept of number.

2nd period. Until the 16th Century:
Foundations of Integers - Rational Numbers -
Empirical Geometry

A decline in the development of mathematics
begins from the 3 century AD. However, the Greek
geometrical heritage of Euclid, Archimedes, Apol-
lonius and Menelaus was preserved and dissemi-
nated by the Byzantines to certain spiritual centers
of the Arab world (Eves, 1997). During these years
the character of Geometry remains very close to the
character of the Geometry of Hellenistic times. On
one hand, it follows the Greek geometric tradition
of Euclid and on the other, the distinction between
theoretical and practical geometry is established.
From the 12th to the 16th century an orientation in
empirical Geometry is observed, as well as its rela-
tion to computational methods and the use of meas-
uring tools (Struik, 1982).

Michael Stifel (1487-1567) was the first to de-
fine negative numbers as numbers less than zero and
positive numbers as greater than zero. He was the
first to describe zero, fractional and irrational num-
bers as numbers (Sinkevich, 2015). In his work Ar-
ithmetica Integra (1544) he has an amazing geomet-
ric awareness of the number. He writes about inte-

gers, rational and irrational numbers and how they
are distributed among themselves, that is, their po-
sition in the line of numbers. He recognized that
there are infinite fractions and irrational numbers
between two consecutive integers, which can be in-
terpreted as a demonstration of the density of those
numbers. We observe that Stifel’s recognition of
negative numbers as numbers and their placement
left of zero is a precursor to the notion of the num-
ber line, but also to the infinite number on it.

In the 16th century a transformation began in
the classical conception of number and magnitude.
Francois Viete (1540-1603) introduced a new form
of symbolism to denote unknown magnitudes and
numbers, stating that numbers and magnitudes can
be interchanged. This relationship between numbers
and magnitudes encouraged the idea that numbers
could also be treated as if they were continuous in
the Aristotelian sense of continuity (Neal, 2002).

Stevin (1548-1620) believed that the number
was the measure of a quantity and that the numbers
were continuous rather than discrete (Neal, 2002).
Stevin also developed a system with decimal exten-
sions of very complicated numbers, without the use
of the decimal point, which made it more apparent
that an unreasonable (irrational) number could be
approached by a rational (Rogue, 2012) and at the
same time implicitly contained the idea of a numer-
ical continuous. It essentially meant that the num-
bers could be represented along a line (Neal, 2002).

Thus, in his work Arithmetique (1585) we
find new mathematical concepts in which the unit
is a number, any root is a number, any numbers can
be square and there are no numbers that are unrea-
sonable, irregular, unexplained (Lemonidis, 1990).
Waerden (1985) typically states that Stevin's general
concept of real numbers was accepted, implicitly or
explicitly, by all subsequent scientists. Furthermore,
Fearnley-Sander (1979), (citing Katz & Katz, 2011),
wrote that the modern concept of real number was
first conceived by Simon Stevin, in about 1600, and
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developed into mathematics over the next two cen-
turies.

However, even during this period there is no
concept of the number line and the identification
of each point with a number. Nevertheless, the ele-
ments that make it possible to display number line
were beginning to emerge.

3rd period. From the 17th century
to the beginning of the 19th century:
The first connection between numbers and
geometric line - Algebraization of geometry

Mapping the lines of numbers was not a com-
mon idea among mathematicians until the end of
the 16th century. However, the concept of the num-
ber line began to emerge in the 17th century by
some pioneering mathematicians (Nufez, 2011).

The concept of logarithm was invented in the
early 17th century as a means of simplifying arith-
metic calculations. The main problem of mathe-
maticians of the time was to construct sufficiently
dense geometrical progressions to be inserted be-
tween their terms, without a significant error, num-
bers that often appeared in calculations. The terms
of geometrical progression should simultaneous-
ly be put in a one-to-one correspondence with
the terms of a numerical progression (Thomaidis,
1995). John Napier (1616), in his attempt to explain
the definition of logarithm in his book A Description
of the Admirable Table of Logarithmes, uses diagrams
showing a line with numbers (Figure 2).
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Figure 2. The concept of number line by Napier (1616).

However, John Wallis (1685) was the first to
use a number line in his book, Treatise of Algebra
(Figure 3), in order to interpret addition and sub-
traction with negative numbers, using the exam-
ple of a man moving along a straight line starting at
point A (Heefter, 2011).
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is to fay, heis advanced 3 Yards lefs than nothing.

Which in propriety of Speech, cannotbe, (fince there cannot he lefs than
nothing.) And therefore as to the Line AB Forward, the cafe is Impoffible.

Figure 3. John Wallis introduces the number line
into his algebra.

The development of algebraic symbolism
and the connection of curves to their equations led
Descartes to the algebraization of geometry with the
help of the coordinate system. Thus, geometrical re-
lations are expressed through an analytic functional
dependence that leads Descartes to use the algebraic
approach to find solutions to geometrical problems.
The purpose of his method was, on one hand, to lib-
erate geometry from the use of diagrams through
the algebraic process, and on the other to give mean-
ing to the functions of algebra through geometric
interpretation.

In fact, however, the coordinate system is de-
fined by lines that exist in the particular problem,
irrespective of the angle they form. Also, Descartes
does not use the terms abscissa, ordinate or axis in
his work. Descartes did not introduce the number
line through the discovery of the coordinate system
in 1637 in his work La Géometrie, since he never
mentions the concept of axis, and none of his illus-
trations depict an axis or a numerical system of co-
ordinates even when the values for specific magni-
tudes are specified (Nufez, 2011).
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In the 18th century, Ephraim Chambers
(1728) in his work Cyclopaedia or, An universal dic-
tionary of arts and sciences displays for the first time
the numbering of the points on one of the axes of the
coordinate system. In the illustration of the ellipse
(Figure 4) the main axis AB is delineated by the se-
quence 10, 20, 30, ... 90.

//I‘jz_t.!éctvr
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Figure 4. Chambers (1728, Trigonometry table).

However, these numbers do not correspond
to some measures for the AC segment. Since this
is an ellipse, Chambers makes a connection of the
points marked by the angle formed by the ECa,
where there would be the point of the ellipse. Thus,
the values marked in line AB correspond to a num-
ber of angles and not to a variable x defined on the
AB axis, beginning with C.

The first recording of number lines appears in
the first half of the nineteenth century in the work of
Ernst Gottfried Fischer (1754-1831). Fischer works
with negative and positive quantities without limi-
tation. He views positive and negative quantities as
mathematical objects constructed in opposite di-
rections - a fundamental concept for the construc-
tion of number lines (Schubring, 2005). Fischer
deals with the delimitation of points on the num-
ber lines, making a graphical correspondence be-
tween the values of the variables x and y with their
curve in a rectangular coordinate system (Figure 7)

in the geometric representation of the expression
x*-5x*+6=y (Schubring, 2005).

He explicitly associates each point on the axis
of the abscissa with the values of x and corresponds
to one point on the axis of the ordinate.
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Figure 5. Fischer's coordinate system (1829).

Alongside the work of Fischer, the use of the
concept of axis appears in Carl E Gauf3 (1777-1855)
in a publication in Theoria residuorum biquadraticum
(1831). Gauf3 first considers the line of real numbers,
taking into account the positive numbers in one di-
rection and the negative numbers in the other. Gauf$’s
contribution was to describe integers in a series of
points in a line. While Fischer made a graphical re-
cording of the number line, Gauf3 explains it verbally.
Gauf$’s proposal was to work only with integers. He
resorted to the concept of the line only to describe the
integers in the same line (Amadeo, 2018).
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4th period. From the beginning of the 19th century
to the present: The foundation of the number line
in its present form.

During the 19th century, more abstract geo-
metric theories began to emerge, which led to the
creation of non-Euclidean geometries and the axi-
omatization of geometry. The creation of these ge-
ometries had the effect of changing the old con-
cepts of mathematics. The emergence of mathemati-
cal contradictions due to unclear concepts, intuitive
proofs and ambiguous expressions led the 19th-cen-
tury mathematicians to realize that the mathemati-
cal construct had to be based on solid foundations.
Thus, they tried to rigorously develop the system of
real numbers and then base on it all the basic con-
cepts of analysis.

The first attempt to develop a theory of real
numbers was made in the early 1830s by Bolzano,
who saw real numbers as limits of progressions of ra-
tional numbers (Boyer & Merzbach, 1997). Around
the same time, Rowan Hamilton (1805-1865) made
an attempt to define real numbers, but could not
escape the logic of ordinary geometric tradition
(Crossley, 1987).

Meray (1835-1911) believed that there was a
gap in mathematical logic from the time of Cauchy
onwards. He thus defined the limit of a sequence as
a real number and then defined a real number as a
limit of a sequence of rational numbers. He essen-
tially assumed that a convergent sequence had a ra-
tional or fictitious number as the limit. Fictitious
numbers can be ordered and they are the known ir-
rational numbers (Boyer & Merzbach, 1997).

Karl Weierstrass (1855-1897), wanting to
base infinite calculus solely on the concept of num-
ber, believed that he had to define irrational num-
bers irrespective of the concept of limit. He there-
fore considered the convergent sequence itself as the
number or the limit. Therefore, irrational numbers
are defined as sets of rational numbers, rather than
ordered sequences of rational numbers (Boyer &
Merzbach, 1997).

In 1871, Georg Cantor (1845-1918) launched
a new numbering program, similar to the Meray
and Weierstrass programs. At the same time Heine
(1821-1881) proposed some simplifications that led
to the so-called Cantor-Heine development, which
resembles that of Meray, in which convergent se-
quences that do not converge to rational numbers
are considered to define irrational numbers.

However, the most imposing attempt at de-
fining the real number was made by Dedekind
(1831-1916). Dedekind believed that for the con-
cept of the limit to be rigorous, it had to be devel-
oped within arithmetic and without the aid of geom-
etry. Initially, he wondered in which way a continu-
ous geometric size differs from rational numbers.
While Galileo and Leibniz considered earlier that
the continuity of points on a line was the result of
their density, Dedekind observed that while the ra-
tional numbers have this property, they do not form
a continuous one. He concluded, therefore, that the
continuity of a straight segment is due to the nature
of dividing a segment into two parts by one point in
the segment. In each division, the points in the seg-
ment are divided into two classes, so that each point
belongs to one single class, and each point of one
class is to the left of each point in the other, and then
there is a unique point which can do this division.
This observation by Dedekind reveals the secret of
continuity (Eves, 1997).

Dedekind tried to give a clear definition of
continuity, first for the points of a straight line and
then for a set of numbers starting from the set of
rational numbers, after observing that the ordering
properties of rational numbers apply just as the rela-
tions between the points of a straight line. However,
not all arithmetic phenomena applied to points in
a straight line can be applied to the set of rational
numbers. Thus, the set of rational numbers is inad-
equate and should be supplemented with new num-
bers so that the new set can achieve the same com-
pleteness as the straight line (Mpantes, 2013).
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Dedekind considered that the set of rational
numbers could be extended to a continuous set of real
numbers if the Cantor-Dedekind principle accepted
that the points of a straight line could be mapped one
by one with the real numbers. So, we have the foun-
dation of the number line in its current form.

Difficulties of the use of number line
in the education

We did not exhaustively examine all the re-
search carried out in the various areas of mathemat-
ical concepts where the number line is used as a tool,
but we did selectively investigate the areas of natural
numbers, fractions and irrational numbers.

The natural numbers and their operations on
the number line

Diezmann et al. (2010) interviewed annually,
over a 3-year period, 67 students (aged 10-12 years)
on a total of six number line items drawn from the
Graphical Languages in the Mathematics (GLIM)
test. They argue that: “Although the structured num-
ber line can assist students’ understanding of math-
ematics, our research indicates that some prima-
ry students experience difficulty with the number
line” (Diezmann & Lowrie, 2006; Lowrie & Diez-
mann, 2005: 25). They found that at least 10% of the
67 students interviewed in their study were unsuc-
cessful at the structured number line items. Solution
errors were common. They included the difficul-
ties with distance, position, counting or misreading
the diagram. The use of a simple counting strategy
was inappropriate because it would incorrectly as-
sume that (a) the marked line segments were evenly
spaced, and (b) the distance between each segment
represented one unit. The spacing between mark-
ings of line segments can be variable on structured
number lines with only some of the line segments
marked. This means that the distance between the
segments can represent any number of units. Conse-
quently, students who used only the counting strat-
egy were the most likely to be unsuccessful.

Skoumpourdi (2010) investigated the ways
in which the number line can function in solv-
ing mathematical tasks by 32 Greek first graders
(6 years old). Each student in the experiment was
given one of the two versions of a written test. One
version consisted of word problems of addition or
subtraction and the other version consisted of the
same problems accompanied by a number line. The
results of this study showed that students had diffi-
culty in interpreting the number line representation
and in translating the problem to the number line.

Fractions and number line

Many studies show that students encounter
several difficulties in introducing the number line
into fractions and using it as a visual model (Bright,
Behr, Post & Wachsmuth, 1988; Clarke, Roche &
Mitchell, 2007; Hannula, 2003; Mitchell & Horne,
2008; Petit, Laird, Marsden & Ebby, 2010; Pearn &
Stephens, 2007; Pettito, 1990; Saxe et al., 2007).

Bright et al. (1988) argue that an interpreta-
tion of this difficulty with the number line is relat-
ed to its features as a model. The number line mod-
el consists of image information accompanied by
symbols and it is difficult to connect the informa-
tion contained in these two types of representation.
As a result, the authors conclude: “A hypothesis aris-
ing out of this analysis is that the need to coordinate
symbolic and pictorial information with the num-
ber line model poses difficulty in matching fraction
names with number line representations” (Bright et
al., 1988: 227).

When students first interact with the num-
ber line, they often operate with the natural num-
bers logic and place the fractions on the numerator
in the order of their numerator or denominator size
(Figure 6) (Petit, Laird, Marsden & Ebby, 2010).
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Figure 6. Number line with fractions on the numerator
in the order of their numerator or denominator size.
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Students in the first three grades shift from
succession strategies to proportion strategies to
place numbers on the number line (Pettito, 1990).
This means that students understand the proportion
between distances and not just succession. For ex-
ample, Figure 7 below shows that the fractions are
positioned correctly in sequence but not propor-
tionally.

1
0o 4 3 2 1

-
«

Figure 7. Number line with fractions positioned
correctly in sequence but not proportionally.

Another common mistake in students’ initial
contact with the number line, when there are multi-
ple units, is that they take the fractional part of the
whole number line and not the unit part. For exam-
ple, 273 is set to 4 (Clarke, Roche & Mitchell, 2007).

Many times, instead of counting the intervals
from zero to the fraction, students count the verti-
cal small lines of the graduation of the number line
(Bright, Behr, Post & Wachsmuth, 1988; Pearn &
Stephens, 2007).

Students find it difficult to place fractions that
have multiple coefficients (i.e., equivalents) with re-
spect to the graduation of the number line (Hannu-
la, 2003; Petit, Laird, Marsden & Ebby, 2010). Stu-
dents also face significant difficulties in the case
where the graduation of the line is incomplete (Saxe
etal., 2007).

Research shows that teachers need special
training on the nature of the number line and on
how it can be used as a tool in teaching various math-
ematical concepts. Without this training, teachers
also find it difficult to use the number line (Gray &
Doritou, 2008; Teppo & Van den Heuvel-Panhuizen,
2014; Van den Heuvel-Panhuizen, 2008).

Irrational numbers and number line

Fischbein, Jehiam & Cohen (1995) examined
the multitude of rational and irrational numbers,
their density, and the relationship between the ra-
tional and irrational numbers and the points on the
number line. To the question “Does a rational num-
ber correspond to every point on the number axis?”
the correct answer being “no” was given by 40% in
grade 9, 47% in grade 10 and 66% by college stu-
dents. Especially for the college students, the results
must be considered as very bad. To the question
“Is the following statement true: For every irrational
number there is a corresponding point on the number
axis.” the correct answer (“yes”) was given by 63%
in grade 9; 56% in grade 10, and 80% by the pre-ser-
vice teachers. Students were also asked if the follow-
ing statement was true: “Every point on the number
axis has a corresponding real number”. The correct
answer (“yes”) was given by 37% in grade 9, 63% in
grades 10 and 90% by college student.

Kidron (2016) argued that there are three dif-
ferent representations of irrational numbers; the first
relates to their decimal representation, the second to
the line of real numbers, and the third to the rela-
tionship between incommensurability and irration-
al numbers. Assigning any real number to a point
on the number line is difficult to understand when
one has never seen an irrational on the number line,
especially given the fact that the line of numbers is
dense with rational numbers (everywhere).

Sirotic and Zazkis (2007) conducted a study
involving 46 secondary education teachers on how
to represent the irrational number V5 at a point on
the number line. Researchers deliberately chose V5
instead of V2, believing that V2 would lead some
participants to automatically recall from their mem-
ory the value of V2 rather than construct it. The re-
sults of the research showed that the geometric rep-
resentation of the irrational numbers didn’t occur to
most participants. The common perception of the
real number line seems to be confined to the num-
ber line of rational numbers, or even more strict-
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ly, to the number line of decimal rational numbers,
where only finite decimal numbers take their repre-
sentations as “points in the number line”.

Vamvakoussi and Vosniadou (2012) found
that the analogy between points and numbers im-
plicit in the use of the number line is not utilized by
students. They found also that the infinity of points
on a segment might be more accessible to students
compared to the infinity of numbers in an interval.

Many studies show that students’ initial con-
ceptions of the points on a straight segment and also
of the numbers in an interval might be limited and
biased towards the idea of discreteness (Fischbein,
1987; Giannakoulias, Souyoul & Zachariades, 2007;
Hannula, Pehkonen, Maijala & Soro, 2006; Tirosh &
Stavy, 1996; Vamvakoussi & Vosniadou, 2004; 2007;
2010).

Correlation between the historical evolution
and the difficulties encountered in education

First of all, we should note that the mathemat-
ical integration and constitution of the notion of the
number line, as we know it today, took place very
slowly in the history of mathematics. As we have
seen, it was only with the foundations of Dedekind
and Cantor in the late 19th and the early 20th cen-
tury that we can now consider that there is a one-to-
one correspondence between the points of a straight
line and the numbers of the set of real numbers. This
in itself shows that while the concept of the number
line appears to be simple, its composition to its pre-
sent form has been long and developed through the
four periods mentioned in the section V.

As critical points in this mathematical consti-
tution of the notion of number line over the course
of mathematical history, we can in principle con-
sider the separation between the numbers and the
magnitude or the separation between the numbers
and the straight line, as presented in historical anal-
ysis in the first period (V.1). We can see this separa-
tion, as we indicated above, in the mistakes of stu-

dents who often manage numbers separately from
the measures on the straight lines of numbers. We
saw such errors in the natural numbers, but also in
the fractions. This difficulty is also interpreted from
the semiotic point of view, when a simultaneous
management of two different registers in a concept
is needed. In this case, we have the simultaneous
management of arithmetic (numbers) and geomet-
ric (measures) register. This fact creates additional
difficulties for students in their attempt to manage
the number line (Duval, 1988).

This difficulty, which refers to the division be-
tween number and magnitude, can arise from the
simpler types of the number line that we use, such as
the first type of filled number lines reported by Tep-
po & Van den Heuvel-Panhuizen (2014) to the most
complex number lines (fifth type).

The second critical point that appears in the
historical evolution, but also as a difficulty for stu-
dents, is the negative numbers and the orientation
on the number line in the positive or negative di-
rection.

As we have already seen in the historical evo-
lution of the number line in the second period (V.2)
of the 16th century, Stifel recognizes the negative
numbers and places them to the left of zero. The
difficulties of students concerning managing nega-
tive numbers on the number line is also highlight-
ed in the Heeffer (2011) and Thomaidis & Tzanakis
(2007) research mentioned in Chapter III. The third
type of number line, the ‘directed - length number
lines’ reported by Teppo & van den Heuvel-Panhui-
zen (2014), requires this ability of orientation on the
number line.

The third critical point is the density of rational
numbers and the extra unit intervals needed to place
them on the line of numbers. This occurs in students’
difficulties when placing fractions and generally ra-
tional numbers on the number line where it is nec-
essary to determine the extra unit space such as, for
example, specifying the unit of % to place % on the
number line. We saw that this was one of the points
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of difficulty and mistakes of the students in the frac-
tions in Chapter VI. Another point of difficulty for
students, as well as teachers, is the concept of the den-
sity of rational numbers. That refers to understanding
that between two rational numbers there are infinite
others (e.g. Lemonidis, Tsakiridou & Meliopoulou,
2018; Vamakoussi & Vosniadou, 2004; 2007; 2010).

We have observed that in the historical revo-
lution that during the second (V.2) and third (V.3)
periods the formation and symbolic expression of
rational numbers in numbers as well as the alge-
braization of geometry and the conditions for the
placement of rational numbers on the number line
were developed. This ability to determine the extra
unit measure required by students is described by
Teppo and Van den Heuvel-Panhuizen (2014) in the
rational number line (the fourth type).

The fourth critical point focuses on the den-
sity of the irrational numbers, the separation of the
rational from the irrational numbers, and the rep-
resentation of the irrational numbers on the num-
ber line.

In paragraph VI we examined the difficulties
of students and teachers of mathematics regarding
the density and separation of rational and irrational
numbers and the representation of irrational num-
bers on the number line.

As it was pointed out drawing on histori-
cal information, the identification of real numbers
and their correspondence with points on the num-
ber line reaches its conclusion very late, actually be-
tween the late 19" and the early 20" century. The
historical evolution and constitution of these issues
are presented during the fourth period (V.4) of the
historical evolution, as presented above.

Discussion — Conclusion

In this work we distinguish mathematical
number lines, such as the axis, from their represen-
tations of the graduated and the empty number line.
We believe that graduated number lines are closer

to the mathematical axis and retain its components
rather than the empty number line. In our historical
analysis the axis is the mathematical object consid-
ered, when referring to the number line, and we dis-
tinguish four periods regarding its evolution. First
of all, it must be emphasized that the completion of
the concept of the axis during the history of math-
ematics took place very late. The same conclusion
was reached in the Amadeo (2018) research. This in
itself shows that the concept of number line is not
simple, although it seems to be so.

By comparing the historical evolution of the
number line with the difficulties of the students, the
first critical point seems to be drawn by the separa-
tion between the numbers and the magnitude or the
separation between the numbers and the straight
line. The second critical point is drawn by the neg-
ative numbers and the orientation on the number
line in the positive or the negative direction. The
above mentioned are reflected both in the historical
development and in the difficulties of the students,
also highlighted by Thomaidis & Tzanakis (2007)
and Heefer (2011). The third critical point is drawn
by the density of rational numbers and the extra
unit intervals needed to place them on the line of
numbers. Finally, the fourth critical point is drawn
by the density of the irrational numbers, the sepa-
ration of the rational from the irrational numbers
and the representation of the irrational numbers on
the number line. The above four critical points are a
source of difficulty for students as well as adults, and
we also find them in students’ mistakes.

More research is needed on both the history
of mathematics and the behavior of students to clar-
ify the nature of these difficulties. If the difficulties
concerning these critical points comprise epistemo-
logical obstacles in the sense that Brousseau (1983)
pointed it out, they should be specifically addressed
by the teaching procedure and should be overcome.
Teppo & Van den Heuvel-Panhuizen, (2014) pro-
vide some such highlights as well as suggestions for
the teaching of number lines.
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This study examined the students’ difficulties
regarding mathematical concepts of natural num-
bers, fractions and irrational numbers, where the
number line is used as a model for teaching. This
research could be extended to the difficulties of pu-
pils and adults, as well as to other areas of mathe-
matical concepts, where the number line is applied
as a mathematical concept. Such examples of con-

References

cepts can be found in geometry, in vector geometry,
in measurements on lines, in inequations, etc. For
example, in our research (Lemonidis, 1990, 1991)
on French high school students we found that they
encountered serious difficulties when asked to apply
the geometric transformation of homothety to very
simple situations, i.e., to a point in a graduated line.

e Amadeo, M. (2018). Textbooks revealing the development of a concept - the case of the number line in the
analytic geometry (1708-1829). ZDM, 50 (5), 907-920. DOI: 10.1007/s11858-018-0968-7

e Bachelard, G. (1938). La formation de lesprit scientifique. Paris: ] Vrin.

e Beishuizen, M. (1999). The empty number line as a new model. In: Thompson, 1. (ed.) Issues in teaching nu-
meracy in primary schools (157-168). Buckingham: Open University Press.

e Boyer, C. B. & Merzbach, U. C. (1997). H wropia twv pabyuatikwv. Abfiva: Ivevpatikog. DOLI:
10.2307/2532593 [The history of mathematics] [in Greek].

e Bright, G. W, Behr, M. J., Post, T. R. & Wachsmuth, I. (1988). Identifying fractions on number lines. Journal for
Research in Mathematics Education, 215-232. DOI: 10.2307/749066

e Brousseau, G. (1976). Les obstacles épistémologiques et les problémes en mathématiques. In: Comptes-ren-

dus de la XXVIIIéme rencontre organisée par la Commission Internationale pour I'Etude et 'Amélioration de
PEnseignement des Mathématiques (101-117). Louvain-la-Neuve.

e Brousseau, G. (1983). Les obstacles épistémologiques et les problémes en mathématiques. Rech Didact Math, 4

(2), 165-198.

e Bunt, L. N. H,, Jones, P. S. & Bedient, J. D. (1981). Ot 1010pixés piles twv oroiyeiwdwv pabnuatixdv. ABnva:
[Tvevpatikog. [The historical roots of elementary mathematics] [in Greek]

o Chambers, E. (1728). Cyclopaedia; or An universal dictionary of arts and sciences (Vol. 1-2). London: Printed for

James and John Knapton.

e Clarke, D. M., Roche, A. & Mitchell, A. (2007). Year six fraction understanding: A part of the whole story.
In: Watson, J. & Beswick, K. (Eds.). Proceedings of the 30th annual conference of the Mathematics Education
Research Group of Australasia (MERGA): Mathematics: Essential research, essential practice Vol. 1 (207-216).

Sydney: MERGA.

o Crossley, J. N. (1987). The Emergence of Number. World Scientific Publishing Co Pte Ltd. DOI: 10.1142/0462
e Dickinson, P. & Eade. E (2004). Using the number line to investigate the solving of linear equations. For the

Learning of Mathematics, 24 (2), 41-47.

e Diezmann, C. M., Lowrie, T., & Sugars, L. (2010). Primary students’ success on the structured number line. Aus-

tralian Primary Mathematics Classroom, 15 (4), 24-28.

e Diezmann, C. M. & Lowrie, T. (2006). Primary students’ knowledge of and errors on number lines. In: Grooten-
boer, P,, Zevenbergen, R. & Chinnappan, M. (Eds.). Proceedings of the 29th annual conference of the Mathematics
Education Research Group of Australasia: Identities, cultures, and learning spaces (171-178). Sydney: MERGA.

50



Number line in the history and the education of mathematics

Duroux, A. (1983). La valeur absolue: difficultés majeures pour une notion mineure. Petit x, 3.

Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathematical thinking. Basic
issues for learning. In: Hitt, E. & Santos, M. (Eds.). Proceedings of the Twenty First Annual Meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education (3-26). Columbus,
OH: Clearinghouse for Science, Mathematics, and Environmental Education.

Duval, R. (1988). Graphiques et equations: larticulation de deux registres. Annales de Didactique et de Sciences
Cognitives, 1, 235-255.

Eves, H. W. (1997). Foundations and fundamental concepts of mathematics. Mineola, New York: Dover Publica-
tions, Inc.

Fischbein, E. (1987). Intuition in science and mathematics. Dordrecht, Netherlands: Kluwer Academic Publish-
ers.

Fischbein, E., Jehiam, R. & Cohen, C. (1995). The concept of irrational number in high-school students and
prospective teachers. Educational Studies in Mathematics, 29, 29-44. DOI: 10.1007/bf01273899

Giannakoulias, E., Souyoul, A. & Zachariades, T. (2007). Students” thinking about fundamental real numbers
properties. In: Pitta-Pantazi, D. & Philippou, G. (Eds.). Proceedings of the Fifth Congress of the European Society
for Research in Mathematics Education (426-425). Cyprus: ERME, Department of Education, University of
Cyprus.

Glaeser, G. (1981). Epistémologie des nombres relatifs. Rech Didact Math, 2-3, 303-346.

Gray, E. & Doritou, M. (2008). The number line: Ambiguity and interpretation. In: Figueras, O., Cortina, J. L.,
Alatorre, S., Rojano, T. & Sepu 'lveda, A. (Eds.). Proceedings of the joint Meeting of PME 32 and PME-NA XXX
Vol. 3 (97-104). Mexico: Cinvestav-UMSNH.

Hannula, M. S. (2003). Locating fractions on a number line. In: Pateman, N. A., Dougherty, B. ]. & Zilliox, J. T.
(Eds.). Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education
held jointly with the 25" Conference of PME-NA Vol. 3 (3-24). Honolulu, HI: PME.

Hannula, M. S., Pehkonen, E., Maijala, H. & Soro, R. (2006). Levels of students’ understanding on infinity.
Teaching Mathematics and Computer Science, 4 (2), 317-337. DOI: 10.5485/TMCS.2006.0129

Heefer, A. (2011). Historical objections against the number line. Science & Education, 20 (9), 863-880. DOL:
10.1007/s11191-011-9349-0

Katz, U. K. & Katz, G. M. (2011). Stevin Numbers and Reality. Foundations of Science, 17 (2), 109-123. DOL:
10.1007/s10699-011-9228-9

Kidron, I. (2016). Understanding irrational numbers by means of their representation as non-repeating deci-
mals. In: Nardi, E., Winslew, C. & Hausberger, T. (Eds.). First conference of International Network for Didactic
Research in University Mathematics (73-83). Mar 2016, Montpellier, France. hal-01337883f.

Lemonidis, C. (1990). Conception, réalisation et résultats d une expérience denseignement de 'homothétie (These
de Doctorat). Université Louis Pasteur, L.R.E.M. de Strasbourg. DOI: 10.12681/eadd/3786

Lemonidis, C. (1991). Analyse et réalisation d'une expérience denseignement de 'homothétie. Recherches en
Didactique des Mathématiques (R.D.M), 11 (2-3), 295-324.

Lemonidis, C., Tsakiridou, H. & Meliopoulou, I. (2018). In-Service Teachers’ Content and Pedagogical Content

Knowledge in Mental Calculations with Rational Numbers. International Journal of Science and Mathematics
Education, 16 (6), 1127-1145. DOI: 10.1007/s10763- 017-9822-6.1

51



Charalampos E. Lemonidis, Anastasios C. Gkolfos

52

Lowrie, R., & Diezmann, C. M. (2005). Fourth-grade students’ performance on graphical languages in math-
ematics. In: Chick, H. L. &. Vincent, J. L (Eds.). Proceedings of the 30" Annual Conference of the International
Group for the Psychology of Mathematics Education Vol 3 (265-272). Melbourne: PME.

Mitchell, A. & Horne, M. (2008). Fraction number line tasks and the additivity concept of length measure-
ment. In: Proceedings of the 31st annual conference of the mathematics education research group of Australasia
(353-360).

Mpantes, G. (2013). [Dedekind, continuity and infinity, cuts Dedekind] O Dedekind, n ovvéyein kot To drmeipo,
toués Dedekind. Retrieved from: https://www.scribd.com/doc/147611828/ last access to 21/06/2019. [in Greek]
Murphy, C. (2011). Comparing the use of the empty number line in England and the Netherlands. British Edu-
cational Research Journal, 37 (1), 147-161. DOI: 10.1080/01411920903447423

Murphy, C. (2008). The use of the empty number line in England and the Netherlands. Proceedings of PME, 32
(4), 9-16.

Neal, K. (2002). From discrete to continuous. The broadening of number concepts in early modern England. Mel-
bourne: R W Home, University of Melbourne.

Nuiiez, R. E. (2011). No innate number line in the human brain. Journal of Cross-Cultural Psychology, 42 (4),
651-668. DOI: 10.1177/0022022111406097

Pearn, C. & Stephens, M. (2007). Whole number knowledge and number lines help develop fraction concepts.
In: Watson, J. & Beswick, K. (Eds.). Proceedings of the 30th annual conference of the Mathematics Education
Research Group of Australasia (MERGA): Mathematics: Essential research, essential practice Vol. 2 (601-610).
Hobart, Sydney: MERGA.

Petit, M. M, Laird, R. E., Marsden, E. L. & Ebby, C. B. (2010). A focus on fractions: Bringing research to the class-
room. London: Routledge.

Petitto, A. (1990). Development of number line and measurement concepts. Cognition and Instruction, 7 (1),
55-78. DOI: 10.1207/51532690xci0701_3

Pycior, H. (1987). British abstract algebra: development and early reception. Cahiers d’ Histoire et de Philosophie
des Sciences, 21, 152-168.

Roque, T. (2012). Historia da matematica: uma visyo critica, desfazendo mitos e lendas. Rio de Janeiro: Jorge
Zahar.

Saxe, G. B., Shaughnessy, M. M., Shannon, A., Langer-Osuna, J. M., Chinn, R. & Gearhart, M. (2007). Learning
about fractions as points on a number Line. In: Martin, W. G., Strutchens, M. E. & Elliott, P. C. (Eds.). The learn-
ing of mathematics: Sixty-ninth yearbook (221-237). Reston, VA: National Council of Teachers of Mathematics.
Schubring, G. (2005). Conflicts between generalization, rigor, and intuition. Number concepts underlying the de-
velopment of analysis in 17-19" century France and Germany. New York: Springer. DOIL: 10.1007/0-387-28273-4

Schubring, G. (1986). Ruptures dans le statut mathématique des nombres négatifs. Petit x, 12, 5-32.

Sinkevich, G. (2015). On the History of Number Line. Saint Petersburg: Department of Mathematics, Saint Pe-
tersburg State University of Architecture and Civil Engineering. Retrieved January 18, 2020 from www: https://
www.academia.edu/20922833/On_the_history_of_number_line.

Sirotic, N. & Zazkis, R. (2007). Irrational numbers on the number line — where are they? International Journal of
Mathematical Education in Science and Technology, 38 (4), 477-488. DOI: 10.1080/00207390601151828




Number line in the history and the education of mathematics

Skoumpourdi, C. (2010). The number line: An auxiliary means or an obstacle? International Journal for Math-
ematics Teaching and Learning (Electronic Journal).

Struik, D. J. (1982). [A Brief History of Mathematics] Xvvontixy 1otopia Twv MabBnuatikdv. ABfva:
Zayapomov)og. [in Greek]

Teppo, A. & Van den Heuvel-Panhuizen, M. (2014). Visual representations as objects of analysis: the number
line as an example. ZDM, 46 (1), 45-58. DOI: 10.1007/s11858-013-0518-2

Thomaidis, Y. (1995). Didactic transposition of mathematical concepts and learning obstacles (The case of absolute
value) (doctoral thesis). Greece: Aristotle University of Thessaloniki. [in Greek]

Thomaidis, Y. & Tzanakis, C. (2007). Historical evolution and students’ conception of the order relation on the
number line: the notion of historical “parallelism” revisited. Educational Studies in Mathematics, 66, 165-183.
DOI: 10.1007/s10649-006-9077-6

Tirosh, D. & Stavy, R. (1996). Intuitive rules in science and mathematics: The case of “everything can be divided
by two”. International Journal of Science Education, 18, 669-683. DOI: 10.1080/0950069960180603

Treffers, A. (1993). Wiskobas and Freudenthal: realistic mathematics education. Educational Studies in Math-
ematics, 25 (1-2), 89-108. DOI: 10.1007/978-94-017-3377-9_6

Van den Heuvel-Panhuizen, M. (2008). Learning from “Didactikids”: An impetus for revisiting the empty num-
ber line. Mathematics Education Research Journal, 20 (3), 6-31. DOI: 10.1007/bf03217528

Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An
example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54 (1), 9-35. DOL:
10.1023/b:educ.0000005212.03219.dc

Van der Waerden, B. L. (1985). A history of algebra. From al-Khwarizmi to Emmy Noether. Berlin: Springer-
Verlag.

Vamvakoussi, X. & Vosniadou, S. (2012). Bridging the gap between the dense and the discrete: The num-
ber line and the “rubber line” bridging analogy. Mathematical Thinking and Learning, 14 (4), 265-284. DOI:
10.1080/10986065.2012.717378

Vamakoussi, X. & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of sec-
ondary school students’ understanding of rational numbers and their notation. Cognition and Instruction, 28,
181-209. DOI: 10.1080/07370001003676603

Vamvakoussi, X. & Vosniadou, S. (2007). How many numbers are there in an interval? Presuppositions, syn-
thetic models and the effect of the number line. In: Vosniadou, S., Baltas, A. & Vamvakoussi, X. (Eds.). Refram-
ing the conceptual change approach in learning and instruction (267-283). Oxford, UK: Elsevier.

Vamvakoussi, X. & Vosniadou, S. (2004). Understanding the structure of the set of rational numbers: A concep-
tual change approach. Learning and Instruction, 14, 453-467. DOI: 10.1016/j.learninstruc.2004.06.013

Waerden, B. L. (1985). A history of algebra: from Al-Khwarizmi to Emmy Noether. Springer.

Wilder, L. R. (1986). EEAiEn twv pabnuatikdv evvowwy. The Open University. ABrjva: I1. Kovtoovpnog A. E.
[The evolution of mathematical concepts] [in Greek]

53



Charalampos E. Lemonidis, Anastasios C. Gkolfos

54

Xapanamnoc E. Jlemonnpguc
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Amnacracuoc II. Tondoc

Yerspra rumHasuja EBosmoc, Conys, Ipuka

BPOJEBHA ITPABA Y UCTOPUJU MATEMATHUKE I MATEMATNYKOM OBPA3OBAIBY

Y osom pagy upso tipegciiasmamo uciipaxycusarba ée3amna 3a iemy paga u aHarusupamo
épcitie §pojesHUX TPpAsuUX, a UOOM UPegciliasbamo gea UCTPANU6arba y Kojuma cy u3 yina uc-
wopujckol paseoja uctiuitiueany enemeniiiu dpojesHe tpase, upasay, Upocimupara u HelamiueHu
Opojesu. Y pagy 3aitium 6puiUMO UCTHLOPUJCKY aHANU3Y e60nyUuUje Hojma OpojesHe ipase u tipeg-
ciiasmamo wewkohe ca Kojuma ce yueHuyl cyo4asajy Upunukom retr yioiwipede, gok Kkpos upu-
ka3 uctopujckol pazeoja Spojeste tpase HOKYUABaAMO ga cainegamo oee ilieuikohe y 0gHocy Ha
Yellupu KputiuuHe iauxe y wiom paseojy.

1. iiepuog. Paseoj mattiemaitiuke go Eyknuga: Pasgeajare dpojesa og tipase

Y anitiuuxoj Ipukoj je y matiiemaitiuyu iiociiojana jacHa pasnuxa usmehy époja u senurune.
bpojesu (apupogru Spojesu) dunu cy jegrociliasHe KoneKyuje guckpeilinux jegunuya koje cy me-
pune muowiinieo. C gpyie cilipare, 6enu4una je 00U4HO ORUCUBAHA KAO HelpeKUugHU K6aHIuTTelH
filogemeH Ha genose Koju ce SeckoHauHo moxe genuttiu. Osa pasnuka usmehy Spoja u senuuure go-
eena je go lipasmweroa pasnuxe usmehy apuitimeniiuke u ieomeitipuje. Apuiimeifiuxa ce dasuna guc-
KpetHuM Unu 0ipaHudeHum K6aHMUIemiom, a 1eoMelipuja KOHIAUHYUPAHUM UL TPOUUDEHUM
keauifiuinieiiom. Ycreq oee pasnuke MHOTU MATlleMAUKY UPOOTIeMU Peulasanii cy Ha pasnuyuiie
Havuxe.

2. niepuog. Jlo 16. eexa: Octrose uenux dpojesa — Payuonannu dpojesu — Emiupujcka ieo-
meilipuja

Y tiepuogy og 12. go 16. sexa youasa ce opujeHiiayuja Ka eMuupujckoj ieomeiipuju, Kao u
HweH 0gHOC Tipema Melfiogama pauyHarea u yiompedu anaiia 3a meperve. Muxaun Hliwiugpen (1487-
1567) je tipsu maiiemaitiuuap koju je HeiaiiueHe dpojese gepurucao xao dpojese marve 0g Hyre,
a dosumiueHe Opojese kao Opojese eehe og Hyne. Ilpsu je u oducao Hyny, Kao u payuoHanHe u
upayuonante dpojese. Y ilioky 16. sexa gouino je go tipomeHe KnacuuHol cxeéamiarba tiojma 6poja
u senuqure. Pparcoa Bujeiti (1540-1603) je yseo Hose cumdone 3a 03HA4ABAIbE HEHLOZHATAUX BeTIU-
uuna u dpojesa, wmepgehu ga cy dpojesu u eenuuune mehycodro samenmusu. VM3 osako cxeahenol
ogHoca usmehy dpojesa u eenuquHa passuna ce ugeja ga ce dpojesu iiaxohe Moty cMalpaiiu KOH-
HWuHyupanum, y gyxy Apucitioiienosoi ioumarea Heipexugrocitiu. Mehymwum, wax u wiokom yenoi
0601 fiepuoga Huje ysegeH tiojam dpojeste tipase HUMIU je Gouisio go Ho6e3usarba céaxe wauke ca
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ogpeherum Spojem. Yiipkoc iliome, Heku MailieMaiiuuapy cy iouenu ga youasajy enemeHiiie Koju
iaxo Hewiio omoiyhasajy.

3. aiepuog. Og 17. go tioueitika 19. sexa: IIpso iiose3usarve Spojesa u eoMeTUPUCKUX GyHcU
- aniedapusayuja ieomeitipuje

Hgeja o dpojesnoj tipasoj Huje 3axueena mehy matiemaimiuuapuma cee go kpaja 16. eexa.
Mehyinium, tiojam SpojesHe iipase iiouure ga ce iojasmwyje y pagosuma HeKux og GUOHUPA maiiie-
maitiuke y 17. sexy. [Ion Banuc (1685) je iipsu yioimpeduo SpojesHy iipasy y ceom geny Tpaxiniaii o
aniedpu (Treatise of Algebra), kako Su tpoitiymauno cadupatrve u ogysumaree HeiamiusHux Spojesa.
Paseoj aniedapckux cumbona u fiosesusarve kpuse ca woj ogiosapajyhum jegnauunama gosesno je
Jexapitia go aniedapusayuje ieomeitipuje y3 lomoh Koopgunailinol cucitiema. [lexapiti y ceom pagy
He KopUcCTiiu TlepMuHe Kao Willo cy alicyuca, opguHaiia u oca. Jlekapiii Huje yseo tiojam dpojesHe
ipase Kkpo3 otikpuhe KoopguHailinol cucitiema y céom pagy leomeitipuja (La Géométrie) us 1637.
ioguHe, ¢ 003UPOM HA HUeHUUY Ja OH HUKAGA He CLLoMUtbe H0jam oce, HUTHU Cy 0ce UM CUCTiem
K0OpgUHATHA UPUKASAHU HA Hel08UM UNYCIpAUUjama, 4ax HU OHga Kaga jacHo ogpehyje épeg-
HocTiu HojequHux senuvuna. bpojesna ipasa ce ipeu iyiti cilomuroe y ipeoj ionosunu 19. sexay
geny Epuecitia Tomugppuga Ouwepa (1754-1831). Puwep ce Sasuo HeoiparnuueHum HeialUBHUM U
iosuitiusHum keanmuinemiuma. OH eKCUNUYUTIHO tlose3yje c6aKy WaUKy HA OCU aiicyuce ca 8peg-
Hociliuma x u ogiosapajyhy wa4ky Ha ocu opguHaiie.

4. iepuog. Og tiouetiika 19. sexa go ganac: Popmynucarve iiojma dpojesHe tipase

IIpsu iokywaj ga ce passuje iwieopuja peantux dpojesa je Hatipaswera panux wpugeceiiux
ioguna 19. sexa og ctpare bonyana, xoju je peante dpojese sugeo kao ipanuuHe 8pegHoOCIliU HU-
306a payuonantux Opojesa. Ommtipunuxe y uciio epeme, Poyan Xamuniiion (1805-1865) tiokywiasa
ga gedpunuuie peante dpojese, anu Huje yciieo ga tipesazube n10iuKy Kojy cy Hamemiana yciiawvena
cxsamiarea y teomettipuju. Y c6om Haciiojary ga 3acHyje ipanuuHu pauyH UcKvy4ueo Ha Uojmy
opoja, Kapn Bajepwitipac (1855-1897) cmaiwipa ga wipeda ga gedpuruuie upayuorante dpojese He-
3a6ucHo og tojma ipanuune epegrociiu. Citioia je cam KoHBepIeHIliHY HU3 cMmaitipao dpojem unu
ipanuuHom epegHouithy u gedpurucao je upayuonante dpojese Kao ckyiose payuoHanHux dpojesa,
iipe Heio ypehete Hu3zosee payuonantux dpojesa. leopi Kanitiop (1845-1918) je 1871. ioguHe citigo-
puo Hosy KoHueuyujy 6poja, cnuuHy ca koHyenyujom Mepea u Bajepwiapaca. Y ucitio epeme, XajHe
(1821-1881) je tipegnosxuo ogpehena tiojegnocitiasmwerba Koja cy gosena go wmaxossanoi Kawniiop-
Xajueosol paseoja, koju iiogceha Ha Mepeos y Kome KoHBepIeHTHU HU30BU KOju He KOH8epiupajy
Ka payuoHanHum dpojesuma ce ysumajy kao gepuruyuja upayuoHantux dpojesa.

Jegexung je iokywao ga ga jacHy gedpunuyujy HeipeKkugHociiiu, Upeo 3a iiauke Ha UPABo]
NUHUjU, a 3atum u 3a ckyii Spojesa tionasehu og cxyia payuonantux Spojeea, a HAKOH WO je
dpumeitiuo ga ceojcitiéa uopeiika payuoHanHux dpojesa ogiosapajy penavujama usmehy mauaxa
Ha tipasoj nunuju. [egexunq je cmaitipao ga ce ckyi pauuoHanHux 6pojesa mosxce UPOUAUPUTTL
go HeiipekugHol ckyiia peantux Spojesa ako ce tupuxeaitiu Kaniiop-/legekurngos apunyuii ipema
Kome ce Tiauke HA UPABO] TUHUjU MOTY jegaH-jegan tipecnukasarvem tiose3aiiu ca peanHum dpoje-
suma. V3 osoia upoucitiuue 3acHusaree dpojesHe tipase y gaHauivoj gopmu.
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IIpe cseia, tipumeitiumo ga matlemamiuuka uHitieipayuja u sacnusaree tiojma dpojesHe upa-
6e y gaHauirbeM CMUCTY ce y ucitiopuju mailemattiuke oguipasana eeoma ciiopo. Kao witio cmo
moinu ga sugumo, 3axeamyjyhu tiocimiaskama Jlegexunga u Kanitiopa kpajem 19. u tiouettixom 20.
8eKa, Mu caga cMalipamo ga nociioju jegan-jegan iosesusarve usmehy wavaxa Ha upaesoj u dpoje-
8a y ckyily peantux dpojesa. To camo io cedu ykasyje ga je, uaxo iojam dpojesHe tipase usinega
jegHocitiasan 3a pasymesarve, 3a popmynucarve weHoi ganauirvel 00nuKa wipedano MHoIo pemeHa.

Kpumtiuunum waukama y yodnuuasawy iojma SpojesHe tipase Wiokom uciiopuje maitie-
Mailiuke MOXeMO cmatlpaitiu pasgeajarve dpoja og eenuuune unu pasgeajarve dpojesa og tipase.
Osakeo fipeilixogHo OUUCAHO pa3geajatbe ce Moxce Upumeiiuiniu y ipewikama koje ipase yueHuuu
Koju uectiio cainegasajy Opojese 0geojero og mepa Ha 6poje6Hoj Upasoj.

pyiy kpuitiuuny wauxky y uciiiopujckoj esonyyuju, xoja imiakohe ipegciiasma u iweuxohy
3a yueHuxe, uuHe HelatliusHu Spojesu u opujeHiliucaHocili Ha SpojesHoj ipasoj y Ho3UUBHOM U
HelatiuBHOM cmepy.

Tpeha xpuitivuna wauxa je Tycliuna payuoHannux 6pojesa u gogamiHu jeguHUUHU UH-
wmepsanu totpeSHu ga du ce oHu dpukasanu Ha SpojesHoj tipasoj. Oso ce ojasuno xkao upodnem
3a yueHuke Kaga cy wipedanu ga cmecitie pasnomke Ha OpojesHoj ipasoj, u payuonante dpojese
youiuiitie, ige je HeOUX0gHO ogpeguiliu gogauite jeguHuure uHillepeane Kao Hilp. 3a uHiiepean %
uume Su ce ogpeguo pasnomax % Ha OpojesHoj ipasoj.

Yeinispitia KpuitiuuHa iauka ce Goxycupa Ha iycitiuny upayuoranuux épojesa, pasgeoje-
HOCUi PAUUOHATIHUX 0F UpayuoHanHux Spojesa, u ipeqciilasmwaree UPAUUOHANHUX Opojesa HA
dpojesHoj 1ipasoj.

Y osom pagy ananuzupanu cmo tieuikohe Koje yueHuuy U HACHLABHUYU MATeMATUKe UMAfy
dasehu ce iycitiunom u pasgeojeHouihy payuoHanHux og upayuoHanHux dpojesa, Kao u ipegciia-
emwarwem upayuoHantux dpojesa Ha Spojesroj ipasoj. Kao witio cmo panuje uctiiakau, u o3u-
sajyhu ce Ha uciliopujcke uzsope, go ugenitiugurxosara peanHux dpojesa u wuxosol Upugpy cu-
eara ca waukama Ha 6pojeéHoj Upasoj gouinio je 8pno kacHo, ek kpajem 19. u toueitikom 20.
eexa.

Kmbyune peum: Opojesna iipasa, uciiopujcka esonyyuja, enuciilemonowika upeupexd,
ipegilicilasparve ojmMo8a.




