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Summary: In modern mathematics curricula in primary and secondary education, number 
line is an important supervisory tool for understanding many concepts, such as different types of 
numbers, equations, and more. The use of the number line is supported by a large number of research-
ers, but there are also studies showing that students find it difficult to use.

Although the concept of number line is important for teaching and there is a great deal of 
debate about its use, as far as we know, there are very few systematic studies that examine the episte-
mological development of some components regarding the concept of number line throughout history 
and correlate this development by learning this concept from the students. However, there are no 
studies that examine the concept of historical development of the number line as a whole or relate it 
to student behavior.

In this paper, therefore, the first attempt has been made to examine the overall development 
of the concept of number line in the history of mathematics. We have therefore studied the historical 
evolution of the concept of number line and divided it into periods, according to the characteristics 
of this evolution. It seems that based on the slow mathematical integration of the concept of number 
line at the end of the 19th century, but also on some other critical points in the four historical periods 
that we have analyzed, some of the difficulties that students encounter when using it are likely to be 
epistemological obstacles.
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Introduction 

Despite its wide popularity, the use of the 
number line in mathematics education is rather 
new. It seems to have originated in the 1950s (He-
effer, 2011: 864). Many curricula and research show 
the use of the number line as a tool for teaching sev-
eral mathematical concepts such as those presented 
below.

In the 1980s the empty number line (ENL) 
was introduced in the Netherlands in the framework 
of Realistic Mathematics for the early years’ mathe-
matics curriculum (Treffers, 1993). The graduated 
and empty number line is used for learning natural 
numbers, and for mental operations of addition and 
subtraction (Beishuizen, 1999; Murphy, 2011). The 
graduated number line and the empty number line 
are the appropriate material to assist students in a 
process of internalizing strategies in mental calcula-
tions (Murphy, 2008). The graduated number line is 
suitable for applying the counting process, which is 
directly related to the operation of addition.

Number line, used as a model for the repre-
sentation of fractions, differs from other models – 
of set and area - in important features (Bright, Behr, 
Post & Wachsmuth, 1988; Petit, Laird & Marsden, 
2010). It can be used as a model for teaching per-
centages (Van den Heuvel-Panhuizen, 2003) and 
algebra for solving linear equations (Dickinson & 
Eade, 2004). 

The concept of epistemological obstacle ap-
pears for the first time in philosophy of science in the 
works of Bachelard (1938). Brousseau (1976, 1983) 
transferred this concept to the science of mathemat-
ics education. Apart from the epistemological obsta-
cle, Brousseau distinguishes between the ontogenic 
obstacle which refer to the genetic development of 
intelligence and the didactical obstacles which ex-
press the difficulties created by the didactic choic-
es. Concerning the epistemological obstacle, Brous-
seau points out that students’ mistakes are theoreti-
cally not the result of ignorance or chance but rather 

an “effect of prior knowledge that was relevant and 
had its success, but which now proves to be false, or 
simply inadequate” (Brousseau, 1983). Epistemolog-
ical obstacles are not easy to overcome because they 
play a crucial role in the construction of knowledge; 
however, they are necessary and their rejection must 
be arranged.

There have been several investigations relative 
to epistemological obstacles, including the research 
of numbers, such as the relative numbers in Glaeser 
(1981), rational and decimal numbers in Brousseau 
(1983), the absolute value in Duroux (1983) and 
Thomaidis (1995). There is also research on number 
line (mentioned below). This research can be related 
to the epistemological obstacles in terms of attempt-
ing to investigate and contrast the difficulties of stu-
dents regarding the number line with the historical 
development of this concept.

Concerning a semiotic consideration of num-
ber line, Teppo & van den Heuvel-Panhuizen (2014: 
46) point out that number line is part of a ‘semiotic 
representation’, according to Duval’s theory (Duval, 
1999). These authors suggest that for a proper man-
agement of number lines one should identify the 
line’s representational components, understand how 
these components show and convey information, as 
well as note Duval’s statement “show the organiza-
tion of relations between the representational units” 
(Duval, 1999: 13).

In this view, however, we must bear in mind 
that representational components of number line, 
such as geometric straight line and numbers, are 
also mathematical objects with important historical 
evolution, as we shall see below. According to Du-
val’s (1988) theory, we can say that the number line 
results from the articulation of two different regis-
ters of representation, more specifically the geomet-
ric (Euclidean line) and the arithmetic (numbers) 
one.

Therefore, the objects that compose the num-
ber line and are articulated between them are math-
ematical ones, which in themselves have a cogni-
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tive state and a historical evolution in the history of 
mathematics.

In this study we first attempt to present rele-
vant research and analyze the types of number lines, 
and then we present two studies examining compo-
nents of number line, namely the direction and neg-
ative numbers based on historical evolution. Then a 
historical analysis of the evolution of number line is 
presented. After that, we present the difficulties en-
countered by students in using the number line as a 
representation tool, and through the historical evo-
lution of the number line we try to contrast these 
difficulties with critical points in its historical evo-
lution. 

The different types of number line

Two studies can be found in the litera-
ture, which distinguish the different types of num-
ber lines. The one is by Diezmann, Lowrie & Sug-
ars (2010), while the other is by Teppo & Van den 
Heuvel-Panhuizen (2014). The first research distin-
guishes between two types of number lines and the 
second among five. We present these distinctions of 
the number lines in the two studies further down.

Diezmann, Lowrie & Sugars (2010) distin-
guish between two major types of number lines: 
structured number lines, which are the topic of this 
paper, and empty number lines. Structured num-
ber lines represent mathematical information by the 
placement of marks on a horizontal or vertical line 
which has been marked into proportional segments. 
Empty number lines are blank lines which students 
can use for calculations.

After studying the literature on number line, 
Teppo & Van den Heuvel-Panhuizen (2014) found 
that there is a large variety of number lines. Thus, 
they have led to the creation of a framework for the 
classification of number lines, taking into account 
(1) the changes in their visual characteristics, (2) 
the type of numbers involved, (3) the way in which 
numbers and their operations are represented by a 

number line and (4) the teaching support provid-
ed by a number line. Based on this framework they 
grouped the number lines into five different types 
commonly found in mathematics textbooks for pri-
mary and secondary education and teacher educa-
tion programs for these school levels.

The first type is the filled number lines, which 
are characterized by equidistant points representing 
natural numbers. This type of number line reflects 
the order of measurement, facilitates the activities of 
counting and placing numbers, as well as exploring 
the order of numbers and their relationships.

The second type is empty number lines, 
which focuses exclusively on the order of the num-
bers. The Empty Number Line (ENL) is character-
ized by points arranged, not necessarily equidistant 
over a section of a line. These points, which rep-
resent numbers, convey information about the re-
lationships associated with the series of numbers. 
ENL is used to present the strategies of calculation. 
Starting from a freely placed point on such a line, 
students can draw a series of jumps to visualize the 
steps involved in performing a particular calcula-
tion.

The third type is the directed-length number 
lines, which use a concept of number measurement, 
where integers are represented by directed length 
lines that are determined both by size and direction. 
Numbers are displayed as lengths that are measured 
from zero. Directed-length number lines support 
arithmetic operations with integers and reasoning 
about the structure of these operations.

The fourth type is the rational number lines, 
where the unit interval is divided into equal inter-
vals and the fractional numbers are represented as 
points. These lines display the sequences of meas-
urement of fractional number and support the posi-
tion of fractions and decimal digits. Parallel lines of 
rational numbers use sets of parallel lines with dif-
ferent unit spacing to show and justify equivalence 
relationships.
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And the fifth type is the proportional and 
double number line, where the numbers are rep-
resented by points that are proportional to the giv-
en limit values. It consists of a double scale line and 
shows pairs of points. Numbers above and below a 
single point represent an analogy used to justify a 
particular analogous relationship. They are used to 
display the approximate position of real numbers.

We consider that the empty number line is 
different from other forms of graduated or struc-
tured number lines, as called by Diezmann, Lowrie 
& Sugars (2010). Graduated number lines are close 
to the mathematical object that is the axis. They are 
one or two lines where different sets of numbers can 
appear on them - natural, integer, rational and real 
numbers. The numbers are presented in proportion-
al relations to each other and to the unitary inter-
vals. While the empty number line has features that 
are different from the mathematical object repre-
senting the axis and it is a representation of it. In the 
empty number line, there are no unitary intervals, 
measures, and proportional relationships between 
the measures. The empty number line is therefore a 
representation farther from the mathematical object 
than the graduated number line.

According to the above, we distinguish three 
types of number lines:

1. The number lines that are mathematical 
objects, such as the axis, the representation 
of the inequalities in the axis, the vector 
line, etc.

2. The graduated or the structured number 
lines.

3. The empty number lines.
The first group of number lines or mathe-

matical figures consists of combining lines or vec-
tors with numbers and is used as a representation in 
various mathematical concepts such as the axis, il-
lustrations of the inequations in the axis, multiplica-
tion of vector (k. ), representation of the homothe-
ty in line, etc. Thus, the first group is the representa-
tion of mathematical objects and it is the mathemat-

ical number line like the axis. The second and third 
groups are axis representations and are those pre-
sented by Diezmann, Lowrie & Sugars (2010) and 
Teppo & Van den Heuvel-Panhuizen (2014) above.

In the present work we will mostly refer to the 
second type of number lines.

Other research on the number line

As far as we know, there are two studies (He-
effer, 2011; Thomaidis & Tzanakis, 2007) which car-
ry out a historical and epistemological analysis on 
the concept components of the number line. More 
specifically, they attempt to correlate the results of 
the historical analysis with the teaching processes 
and students’ behaviors at school.

Thomaidis & Tzanakis (2007) aimed to in-
vestigate the method of parallelism of the historical 
development with the behaviors and teaching in to-
day’s school classrooms and to ask questions con-
cerning this method. For this purpose, the order 
relation was the only one to be examined from the 
components of the number line. They attempted to 
relate the development and function of the knowl-
edge of order relation on the number line, both dur-
ing its historical development and during the teach-
ing and learning of order relation on the number 
line with 16-year-old Greek students.

The results of their historical research show 
that the modern version of the ordering on the real 
number line was introduced only in the 19th cen-
tury, under the influence of the powerful currents 
of arithmetizing mathematics where numbers were 
conceived as quantities. 

The contributions of mathematicians such 
as Stifel (1544), Descartes (1637), Euler (1770) and 
Cauchy (1821) are presented in an attempt to ex-
plore this historical evolution of the notion of or-
der of real numbers on the number line. The au-
thors also note that “till the end of the 18th century, 
there was a strong tendency to reject negative num-
bers by appealing to the ‘quantitative’ conception of 
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number” (Pycior, 1987; Schubring, 1986). Concern-
ing the parallelism between historical evolution and 
mathematics education these authors conclude that 
it has a subtle nature with at least two different as-
pects (metaphorically named “positive” and “nega-
tive”), which are worth further exploration. 

In his work Heeffer (2011) argues that the 
number line may not be appropriate for the early 
teaching of operations involving negative numbers. 
Regarding this claim, he presents a number of argu-
ments based on several discussions between philos-
ophers and mathematicians such as Arnauld, Leib-
niz, Wallis, Euler and D’Alembert during the sev-
enteenth and the eighteenth centuries. The author 
argues that not only the division between negative 
numbers creates problems for the number line, but 
also the idea of quantities smaller than anything is 
also disputed. Based on historical analysis, the au-
thor supports the introduction of negative num-
bers into education in the context of symbolic op-
erations.

Another research on the number line con-
cerning only the historical context is that of Ama-
deo (2018). In this research the intention was to un-
derstand the historical contexts that configure the 
emergence and development of the notion of the 
number line. For this purpose, Amadeo used his-
torical textbooks to explore the number line, while 
contextualizing its use during its initial develop-
ment period in the seventeenth century until its cur-
rent use as in the nineteenth century. The relevant 
analytic geometry textbooks of that time have been 
explored, mainly from France and Germany, to un-
derstand when and how this notion was used. This 
study concludes that the number line “is a notion 
that is initially linked to the practices of analytic ge-
ometry, and that is established as a didactic resource 
in the analysis of curves from the algebraic expres-
sion of its variables. That is, the number line arises in 
the context of teaching. There is in Fischer’s writing 
the first record of this notion only in the nineteenth 
century” (Amadeo, 2018: 919).

Purpose of the research and research questions

The main purpose of the present study is to 
examine the overall development of the concept of 
number line and its constituents in the history of 
mathematics and compare this development with 
the difficulties of individuals in learning this con-
cept. More specifically the research questions posed 
are:

1. Is there a diachronical development in 
the history of mathematics on the notion 
of number line? Could this historical 
evolution be separated into different time 
periods?

2. Is it possible to draw some analogy be-
tween this historical evolution of the con-
cept of the number line and the difficulties 
encountered by individuals in learning 
about this concept?

Method 

The methodology we use in the present study 
is, on the one hand, historical analysis with a refer-
ence to sources, in order to investigate the historical 
evolution of the concept of number line in mathe-
matics. On the other hand, there is a bibliographic 
analysis of the studies on the learning and the use of 
the number line in education to identify the various 
difficulties that students and adults face.

Evolution of number line concept in  
the history of mathematics 

The evolution of the concept of the number 
line was an age-long process which is directly linked 
to the evolution of the concept of numbers and ge-
ometry. The idea of matching every single point of a 
line to a real number, as we know it today, emerged 
at the end of the 19th century. In this evolution we 
can distinguish four basic periods:
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1st period. Mathematics up to Euclid:  
Separation of numbers and lines.

The Egyptians, the Babylonians and the Chi-
nese, whose cultures bear a significant mathemat-
ical tradition, developed sophisticated numerical 
processes, but there was no reference to a number 
line. While they knew important mathematical laws, 
could easily handle numbers and geometric shapes, 
and could solve difficult arithmetic problems that 
required an extraordinary logical ability, the rea-
sons that led them to this mathematical develop-
ment were entirely practical. The mathematics of the 
ancient people of the East focused solely on practi-
cal applications and geometrical problems that were 
solved within a strictly numerical framework.

However, some of the diagrams on Babylo-
nian plates, such as the famous YBC 7289 plaque, 
written around the first third of the second millen-
nium BC, show lines with numbers associated with 
the measurements.

Figure 1. The Babylonian plate YBC 7289.

This does not mean, however, that the crea-
tors and users of such plates were operating in the 
sense of the number line (Núñez, 2011). The identi-

fication of the points of a straight line with numbers 
was the result of the practical and algorithmic na-
ture of the mathematics they used (Crossley, 1987).

In Greek mathematics there was a clear sep-
aration between number and magnitude. Numbers 
(natural numbers) were simply collections of dis-
crete units that measured a multitude. Magnitude 
Size, on the other hand, was usually described as a 
continuous quantity divided into parts and is infi-
nitely divisible (Bunt, Jones & Bedient, 1981).

This distinction between number and magni-
tude also resulted in the distinction between arith-
metic and geometry. Arithmetic dealt with the dis-
crete or non-extended quantity, while geometry 
dealt with the continuous or extended quantity. It 
also imposed a different way of solving and handling 
many problems. The Babylonian arithmetic algo-
rithms had to be replaced by a new geometric al-
gebra which did not allow the addition of lines and 
areas or areas and volumes. There had to be strict 
homogeneity in the formulas used by the Mesopo-
tamian people, which had to be interpreted geomet-
rically (Boyer & Merzbach, 1997). Thus, in ancient 
Greece geometry was transformed into a science, 
with Euclidean geometry studying abstract mental 
objects serving as an example. 

The existence of incommensurable magni-
tudes led to the formulation of a new theory by Eu-
doxus presented in the Book V of “The Elements 
of Euclid”. The separate interpretation of the ratios 
of sizes (proportion) and ratios of integers (frac-
tions) is in line with the level reached by the Greek 
thought. Euclid does not seek to define what he 
means by magnitude. The theory he built does not 
depend on the kind of magnitudes examined and it 
is the one that ensures generality (Lemonidis, 1990).

This differentiation may lead to a categori-
zation of the concept of number. On one hand, the 
concept of number as a means of measuring objects 
(natural numbers) and, on the other, as a means of 
measuring quantities (real numbers as presented 
today). The Greeks were the first to grasp the two 
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forms of the number, perhaps because of their need 
to solve the problem of incommensurability. It is a 
distinction analogous to the present, with the dif-
ferences between natural numbers when considered 
natural or real numbers. 

 The discovery of irrational numbers in an-
cient Greece was the result of comparisons between 
lengths or other quantities and became the focus of 
study for a long time. At that time there was no idea 
of identifying every point of a line with a number. 
The ancient Greeks were also unaware of the neg-
ative numbers (Bunt, Jones, & Bedient, 1981). The 
identification of each real number with the points 
of a straight line was a gradual conception, which is 
primarily associated with the gradual change within 
the context of the concept of number.

2nd period. Until the 16th Century:  
Foundations of Integers - Rational Numbers - 

Empirical Geometry

Α decline in the development of mathematics 
begins from the 3rd century AD. However, the Greek 
geometrical heritage of Euclid, Archimedes, Apol-
lonius and Menelaus was preserved and dissemi-
nated by the Byzantines to certain spiritual centers 
of the Arab world (Eves, 1997). During these years 
the character of Geometry remains very close to the 
character of the Geometry of Hellenistic times. On 
one hand, it follows the Greek geometric tradition 
of Euclid and on the other, the distinction between 
theoretical and practical geometry is established. 
From the 12th to the 16th century an orientation in 
empirical Geometry is observed, as well as its rela-
tion to computational methods and the use of meas-
uring tools (Struik, 1982).

Michael Stifel (1487‒1567) was the first to de-
fine negative numbers as numbers less than zero and 
positive numbers as greater than zero. He was the 
first to describe zero, fractional and irrational num-
bers as numbers (Sinkevich, 2015). In his work Ar-
ithmetica Integra (1544) he has an amazing geomet-
ric awareness of the number. He writes about inte-

gers, rational and irrational numbers and how they 
are distributed among themselves, that is, their po-
sition in the line of numbers. He recognized that 
there are infinite fractions and irrational numbers 
between two consecutive integers, which can be in-
terpreted as a demonstration of the density of those 
numbers. We observe that Stifel’s recognition of 
negative numbers as numbers and their placement 
left of zero is a precursor to the notion of the num-
ber line, but also to the infinite number on it.

In the 16th century a transformation began in 
the classical conception of number and magnitude. 
Francois Viete (1540‒1603) introduced a new form 
of symbolism to denote unknown magnitudes and 
numbers, stating that numbers and magnitudes can 
be interchanged. This relationship between numbers 
and magnitudes encouraged the idea that numbers 
could also be treated as if they were continuous in 
the Aristotelian sense of continuity (Neal, 2002).

Stevin (1548‒1620) believed that the number 
was the measure of a quantity and that the numbers 
were continuous rather than discrete (Neal, 2002). 
Stevin also developed a system with decimal exten-
sions of very complicated numbers, without the use 
of the decimal point, which made it more apparent 
that an unreasonable (irrational) number could be 
approached by a rational (Rogue, 2012) and at the 
same time implicitly contained the idea of a numer-
ical continuous. It essentially meant that the num-
bers could be represented along a line (Neal, 2002).

Thus, in his work Arithmetique (1585) we 
find new mathematical concepts in which the unit 
is a number, any root is a number, any numbers can 
be square and there are no numbers that are unrea-
sonable, irregular, unexplained (Lemonidis, 1990). 
Waerden (1985) typically states that Stevin’s general 
concept of real numbers was accepted, implicitly or 
explicitly, by all subsequent scientists. Furthermore, 
Fearnley-Sander (1979), (citing Katz & Katz, 2011), 
wrote that the modern concept of real number was 
first conceived by Simon Stevin, in about 1600, and 
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developed into mathematics over the next two cen-
turies. 

However, even during this period there is no 
concept of the number line and the identification 
of each point with a number. Nevertheless, the ele-
ments that make it possible to display number line 
were beginning to emerge.

3rd period. From the 17th century  
to the beginning of the 19th century:  

The first connection between numbers and 
geometric line - Algebraization of geometry

Mapping the lines of numbers was not a com-
mon idea among mathematicians until the end of 
the 16th century. However, the concept of the num-
ber line began to emerge in the 17th century by 
some pioneering mathematicians (Núñez, 2011).

The concept of logarithm was invented in the 
early 17th century as a means of simplifying arith-
metic calculations. The main problem of mathe-
maticians of the time was to construct sufficiently 
dense geometrical progressions to be inserted be-
tween their terms, without a significant error, num-
bers that often appeared in calculations. The terms 
of geometrical progression should simultaneous-
ly be put in a one-to-one correspondence with 
the terms of a numerical progression (Thomaidis, 
1995). John Napier (1616), in his attempt to explain 
the definition of logarithm in his book A Description 
of the Admirable Table of Logarithmes, uses diagrams 
showing a line with numbers (Figure 2).

Figure 2. The concept of number line by Napier (1616).

However, John Wallis (1685) was the first to 
use a number line in his book, Treatise of Algebra 
(Figure 3), in order to interpret addition and sub-
traction with negative numbers, using the exam-
ple of a man moving along a straight line starting at 
point A (Heeffer, 2011).

Figure 3. John Wallis introduces the number line  
into his algebra.

The development of algebraic symbolism 
and the connection of curves to their equations led 
Descartes to the algebraization of geometry with the 
help of the coordinate system. Thus, geometrical re-
lations are expressed through an analytic functional 
dependence that leads Descartes to use the algebraic 
approach to find solutions to geometrical problems. 
The purpose of his method was, on one hand, to lib-
erate geometry from the use of diagrams through 
the algebraic process, and on the other to give mean-
ing to the functions of algebra through geometric 
interpretation.

In fact, however, the coordinate system is de-
fined by lines that exist in the particular problem, 
irrespective of the angle they form. Also, Descartes 
does not use the terms abscissa, ordinate or axis in 
his work. Descartes did not introduce the number 
line through the discovery of the coordinate system 
in 1637 in his work La Géometrie, since he never 
mentions the concept of axis, and none of his illus-
trations depict an axis or a numerical system of co-
ordinates even when the values   for specific magni-
tudes are specified (Núñez, 2011).
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In the 18th century, Ephraim Chambers 
(1728) in his work Cyclopaedia or, An universal dic-
tionary of arts and sciences displays for the first time 
the numbering of the points on one of the axes of the 
coordinate system. In the illustration of the ellipse 
(Figure 4) the main axis AB is delineated by the se-
quence 10, 20, 30, … 90.

Figure 4. Chambers (1728, Trigonometry table).

However, these numbers do not correspond 
to some measures for the AC segment. Since this 
is an ellipse, Chambers makes a connection of the 
points marked by the angle formed by the ECa, 
where there would be the point of the ellipse. Thus, 
the values marked in line AB correspond to a num-
ber of angles and not to a variable x defined on the 
AB axis, beginning with C.

The first recording of number lines appears in 
the first half of the nineteenth century in the work of 
Ernst Gottfried Fischer (1754‒1831). Fischer works 
with negative and positive quantities without limi-
tation. He views positive and negative quantities as 
mathematical objects constructed in opposite di-
rections - a fundamental concept for the construc-
tion of number lines (Schubring, 2005). Fischer 
deals with the delimitation of points on the num-
ber lines, making a graphical correspondence be-
tween the values   of the variables x and y with their 
curve in a rectangular coordinate system (Figure 7) 

in the geometric representation of the expression 
 (Schubring, 2005).

He explicitly associates each point on the axis 
of the abscissa with the values of x and corresponds 
to one point on the axis of the ordinate.

Figure 5. Fischer’s coordinate system (1829).

Alongside the work of Fischer, the use of the 
concept of axis appears in Carl F. Gauß (1777‒1855) 
in a publication in Theoria residuorum biquadraticum 
(1831). Gauß first considers the line of real numbers, 
taking into account the positive numbers in one di-
rection and the negative numbers in the other. Gauß’s 
contribution was to describe integers in a series of 
points in a line. While Fischer made a graphical re-
cording of the number line, Gauß explains it verbally. 
Gauß’s proposal was to work only with integers. He 
resorted to the concept of the line only to describe the 
integers in the same line (Amadeo, 2018).
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4th period. From the beginning of the 19th century 
to the present: The foundation of the number line 

in its present form.

During the 19th century, more abstract geo-
metric theories began to emerge, which led to the 
creation of non-Euclidean geometries and the axi-
omatization of geometry. The creation of these ge-
ometries had the effect of changing the old con-
cepts of mathematics. The emergence of mathemati-
cal contradictions due to unclear concepts, intuitive 
proofs and ambiguous expressions led the 19th-cen-
tury mathematicians to realize that the mathemati-
cal construct had to be based on solid foundations. 
Thus, they tried to rigorously develop the system of 
real numbers and then base on it all the basic con-
cepts of analysis.

The first attempt to develop a theory of real 
numbers was made in the early 1830s by Bolzano, 
who saw real numbers as limits of progressions of ra-
tional numbers (Boyer & Merzbach, 1997). Around 
the same time, Rowan Hamilton (1805‒1865) made 
an attempt to define real numbers, but could not 
escape the logic of ordinary geometric tradition 
(Crossley, 1987).

Meray (1835‒1911) believed that there was a 
gap in mathematical logic from the time of Cauchy 
onwards. He thus defined the limit of a sequence as 
a real number and then defined a real number as a 
limit of a sequence of rational numbers. He essen-
tially assumed that a convergent sequence had a ra-
tional or fictitious number as the limit. Fictitious 
numbers can be ordered and they are the known ir-
rational numbers (Boyer & Merzbach, 1997).

Karl Weierstrass (1855‒1897), wanting to 
base infinite calculus solely on the concept of num-
ber, believed that he had to define irrational num-
bers irrespective of the concept of limit. He there-
fore considered the convergent sequence itself as the 
number or the limit. Therefore, irrational numbers 
are defined as sets of rational numbers, rather than 
ordered sequences of rational numbers (Boyer & 
Merzbach, 1997).

In 1871, Georg Cantor (1845‒1918) launched 
a new numbering program, similar to the Meray 
and Weierstrass programs. At the same time Heine 
(1821‒1881) proposed some simplifications that led 
to the so-called Cantor-Heine development, which 
resembles that of Meray, in which convergent se-
quences that do not converge to rational numbers 
are considered to define irrational numbers.

However, the most imposing attempt at de-
fining the real number was made by Dedekind 
(1831‒1916). Dedekind believed that for the con-
cept of the limit to be rigorous, it had to be devel-
oped within arithmetic and without the aid of geom-
etry. Initially, he wondered in which way a continu-
ous geometric size differs from rational numbers. 
While Galileo and Leibniz considered earlier that 
the continuity of points on a line was the result of 
their density, Dedekind observed that while the ra-
tional numbers have this property, they do not form 
a continuous one. He concluded, therefore, that the 
continuity of a straight segment is due to the nature 
of dividing a segment into two parts by one point in 
the segment. In each division, the points in the seg-
ment are divided into two classes, so that each point 
belongs to one single class, and each point of one 
class is to the left of each point in the other, and then 
there is a unique point which can do this division. 
This observation by Dedekind reveals the secret of 
continuity (Eves, 1997).

Dedekind tried to give a clear definition of 
continuity, first for the points of a straight line and 
then for a set of numbers starting from the set of 
rational numbers, after observing that the ordering 
properties of rational numbers apply just as the rela-
tions between the points of a straight line. However, 
not all arithmetic phenomena applied to points in 
a straight line can be applied to the set of rational 
numbers. Thus, the set of rational numbers is inad-
equate and should be supplemented with new num-
bers so that the new set can achieve the same com-
pleteness as the straight line (Mpantes, 2013).
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Dedekind considered that the set of rational 
numbers could be extended to a continuous set of real 
numbers if the Cantor-Dedekind principle accepted 
that the points of a straight line could be mapped one 
by one with the real numbers. So, we have the foun-
dation of the number line in its current form.

Difficulties of the use of number line  
in the education  

We did not exhaustively examine all the re-
search carried out in the various areas of mathemat-
ical concepts where the number line is used as a tool, 
but we did selectively investigate the areas of natural 
numbers, fractions and irrational numbers.

The natural numbers and their operations on 
the number line 

Diezmann et al. (2010) interviewed annually, 
over a 3-year period, 67 students (aged 10‒12 years) 
on a total of six number line items drawn from the 
Graphical Languages in the Mathematics (GLIM) 
test. They argue that: “Although the structured num-
ber line can assist students’ understanding of math-
ematics, our research indicates that some prima-
ry students experience difficulty with the number 
line” (Diezmann & Lowrie, 2006; Lowrie & Diez-
mann, 2005: 25). They found that at least 10% of the 
67 students interviewed in their study were unsuc-
cessful at the structured number line items. Solution 
errors were common. They included the difficul-
ties with distance, position, counting or misreading 
the diagram. The use of a simple counting strategy 
was inappropriate because it would incorrectly as-
sume that (a) the marked line segments were evenly 
spaced, and (b) the distance between each segment 
represented one unit. The spacing between mark-
ings of line segments can be variable on structured 
number lines with only some of the line segments 
marked. This means that the distance between the 
segments can represent any number of units. Conse-
quently, students who used only the counting strat-
egy were the most likely to be unsuccessful.

Skoumpourdi (2010) investigated the ways 
in which the number line can function in solv-
ing mathematical tasks by 32 Greek first graders 
(6 years old). Each student in the experiment was 
given one of the two versions of a written test. One 
version consisted of word problems of addition or 
subtraction and the other version consisted of the 
same problems accompanied by a number line. The 
results of this study showed that students had diffi-
culty in interpreting the number line representation 
and in translating the problem to the number line.

Fractions and number line
Many studies show that students encounter 

several difficulties in introducing the number line 
into fractions and using it as a visual model (Bright, 
Behr, Post & Wachsmuth, 1988; Clarke, Roche & 
Mitchell, 2007; Hannula, 2003; Mitchell & Horne, 
2008; Petit, Laird, Marsden & Ebby, 2010; Pearn & 
Stephens, 2007; Pettito, 1990; Saxe et al., 2007).

Bright et al. (1988) argue that an interpreta-
tion of this difficulty with the number line is relat-
ed to its features as a model. The number line mod-
el consists of image information accompanied by 
symbols and it is difficult to connect the informa-
tion contained in these two types of representation. 
As a result, the authors conclude: “A hypothesis aris-
ing out of this analysis is that the need to coordinate 
symbolic and pictorial information with the num-
ber line model poses difficulty in matching fraction 
names with number line representations” (Bright et 
al., 1988: 227). 

When students first interact with the num-
ber line, they often operate with the natural num-
bers logic and place the fractions on the numerator 
in the order of their numerator or denominator size 
(Figure 6) (Petit, Laird, Marsden & Ebby, 2010).

Figure 6. Number line with fractions on the numerator 
in the order of their numerator or denominator size.
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Students in the first three grades shift from 
succession strategies to proportion strategies to 
place numbers on the number line (Pettito, 1990). 
This means that students understand the proportion 
between distances and not just succession. For ex-
ample, Figure 7 below shows that the fractions are 
positioned correctly in sequence but not propor-
tionally.

Figure 7. Number line with fractions positioned 
correctly in sequence but not proportionally.

Another common mistake in students’ initial 
contact with the number line, when there are multi-
ple units, is that they take the fractional part of the 
whole number line and not the unit part. For exam-
ple, 2⁄3 is set to 4 (Clarke, Roche & Mitchell, 2007).

Many times, instead of counting the intervals 
from zero to the fraction, students count the verti-
cal small lines of the graduation of the number line 
(Bright, Behr, Post & Wachsmuth, 1988; Pearn & 
Stephens, 2007).

Students find it difficult to place fractions that 
have multiple coefficients (i.e., equivalents) with re-
spect to the graduation of the number line (Hannu-
la, 2003; Petit, Laird, Marsden & Ebby, 2010). Stu-
dents also face significant difficulties in the case 
where the graduation of the line is incomplete (Saxe 
et al., 2007).

Research shows that teachers need special 
training on the nature of the number line and on 
how it can be used as a tool in teaching various math-
ematical concepts. Without this training, teachers 
also find it difficult to use the number line (Gray & 
Doritou, 2008; Teppo & Van den Heuvel-Panhuizen, 
2014; Van den Heuvel-Panhuizen, 2008). 

Irrational numbers and number line

Fischbein, Jehiam & Cohen (1995) examined 
the multitude of rational and irrational numbers, 
their density, and the relationship between the ra-
tional and irrational numbers and the points on the 
number line. To the question “Does a rational num-
ber correspond to every point on the number axis?” 
the correct answer being “no” was given by 40% in 
grade 9, 47% in grade 10 and 66% by college stu-
dents. Especially for the college students, the results 
must be considered as very bad. To the question 
“Is the following statement true: For every irrational 
number there is a corresponding point on the number 
axis.” the correct answer (“yes”) was given by 63% 
in grade 9; 56% in grade 10, and 80% by the pre-ser-
vice teachers. Students were also asked if the follow-
ing statement was true: “Every point on the number 
axis has a corresponding real number”. The correct 
answer (“yes”) was given by 37% in grade 9, 63% in 
grades 10 and 90% by college student.

Kidron (2016) argued that there are three dif-
ferent representations of irrational numbers; the first 
relates to their decimal representation, the second to 
the line of real numbers, and the third to the rela-
tionship between incommensurability and irration-
al numbers. Assigning any real number to a point 
on the number line is difficult to understand when 
one has never seen an irrational on the number line, 
especially given the fact that the line of numbers is 
dense with rational numbers (everywhere).

Sirotic and Zazkis (2007) conducted a study 
involving 46 secondary education teachers on how 
to represent the irrational number √5 at a point on 
the number line. Researchers deliberately chose √5 
instead of √2, believing that √2 would lead some 
participants to automatically recall from their mem-
ory the value of √2 rather than construct it. The re-
sults of the research showed that the geometric rep-
resentation of the irrational numbers didn’t occur to 
most participants. The common perception of the 
real number line seems to be confined to the num-
ber line of rational numbers, or even more strict-
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ly, to the number line of decimal rational numbers, 
where only finite decimal numbers take their repre-
sentations as “points in the number line”.

Vamvakoussi and Vosniadou (2012) found 
that the analogy between points and numbers im-
plicit in the use of the number line is not utilized by 
students. They found also that the infinity of points 
on a segment might be more accessible to students 
compared to the infinity of numbers in an interval. 

Many studies show that students’ initial con-
ceptions of the points on a straight segment and also 
of the numbers in an interval might be limited and 
biased towards the idea of discreteness (Fischbein, 
1987; Giannakoulias, Souyoul & Zachariades, 2007; 
Hannula, Pehkonen, Maijala & Soro, 2006; Tirosh & 
Stavy, 1996; Vamvakoussi & Vosniadou, 2004; 2007; 
2010).

Correlation between the historical evolution  
and the difficulties encountered in education 

First of all, we should note that the mathemat-
ical integration and constitution of the notion of the 
number line, as we know it today, took place very 
slowly in the history of mathematics. As we have 
seen, it was only with the foundations of Dedekind 
and Cantor in the late 19th and the early 20th cen-
tury that we can now consider that there is a one-to-
one correspondence between the points of a straight 
line and the numbers of the set of real numbers. This 
in itself shows that while the concept of the number 
line appears to be simple, its composition to its pre-
sent form has been long and developed through the 
four periods mentioned in the section V.

As critical points in this mathematical consti-
tution of the notion of number line over the course 
of mathematical history, we can in principle con-
sider the separation between the numbers and the 
magnitude or the separation between the numbers 
and the straight line, as presented in historical anal-
ysis in the first period (V.1). We can see this separa-
tion, as we indicated above, in the mistakes of stu-

dents who often manage numbers separately from 
the measures on the straight lines of numbers. We 
saw such errors in the natural numbers, but also in 
the fractions. This difficulty is also interpreted from 
the semiotic point of view, when a simultaneous 
management of two different registers in a concept 
is needed. In this case, we have the simultaneous 
management of arithmetic (numbers) and geomet-
ric (measures) register. This fact creates additional 
difficulties for students in their attempt to manage 
the number line (Duval, 1988).

This difficulty, which refers to the division be-
tween number and magnitude, can arise from the 
simpler types of the number line that we use, such as 
the first type of filled number lines reported by Tep-
po & Van den Heuvel-Panhuizen (2014) to the most 
complex number lines (fifth type).

The second critical point that appears in the 
historical evolution, but also as a difficulty for stu-
dents, is the negative numbers and the orientation 
on the number line in the positive or negative di-
rection.

As we have already seen in the historical evo-
lution of the number line in the second period (V.2) 
of the 16th century, Stifel recognizes the negative 
numbers and places them to the left of zero. The 
difficulties of students concerning managing nega-
tive numbers on the number line is also highlight-
ed in the Heeffer (2011) and Thomaidis & Tzanakis 
(2007) research mentioned in Chapter III. The third 
type of number line, the ‘directed - length number 
lines’ reported by Teppo & van den Heuvel-Panhui-
zen (2014), requires this ability of orientation on the 
number line.

The third critical point is the density of rational 
numbers and the extra unit intervals needed to place 
them on the line of numbers. This occurs in students’ 
difficulties when placing fractions and generally ra-
tional numbers on the number line where it is nec-
essary to determine the extra unit space such as, for 
example, specifying the unit of ¼ to place ¾ on the 
number line. We saw that this was one of the points 



49

Number line in the history and the education of mathematics

of difficulty and mistakes of the students in the frac-
tions in Chapter VI. Another point of difficulty for 
students, as well as teachers, is the concept of the den-
sity of rational numbers. That refers to understanding 
that between two rational numbers there are infinite 
others (e.g. Lemonidis, Tsakiridou & Meliopoulou, 
2018; Vamakoussi & Vosniadou, 2004; 2007; 2010).

We have observed that in the historical revo-
lution that during the second (V.2) and third (V.3) 
periods the formation and symbolic expression of 
rational numbers in numbers as well as the alge-
braization of geometry and the conditions for the 
placement of rational numbers on the number line 
were developed. This ability to determine the extra 
unit measure required by students is described by 
Teppo and Van den Heuvel-Panhuizen (2014) in the 
rational number line (the fourth type).

The fourth critical point focuses on the den-
sity of the irrational numbers, the separation of the 
rational from the irrational numbers, and the rep-
resentation of the irrational numbers on the num-
ber line. 

In paragraph VI we examined the difficulties 
of students and teachers of mathematics regarding 
the density and separation of rational and irrational 
numbers and the representation of irrational num-
bers on the number line.

As it was pointed out drawing on histori-
cal information, the identification of real numbers 
and their correspondence with points on the num-
ber line reaches its conclusion very late, actually be-
tween the late 19th and the early 20th century. The 
historical evolution and constitution of these issues 
are presented during the fourth period (V.4) of the 
historical evolution, as presented above.

Discussion – Conclusion 

In this work we distinguish mathematical 
number lines, such as the axis, from their represen-
tations of the graduated and the empty number line. 
We believe that graduated number lines are closer 

to the mathematical axis and retain its components 
rather than the empty number line. In our historical 
analysis the axis is the mathematical object consid-
ered, when referring to the number line, and we dis-
tinguish four periods regarding its evolution. First 
of all, it must be emphasized that the completion of 
the concept of the axis during the history of math-
ematics took place very late. The same conclusion 
was reached in the Amadeo (2018) research. This in 
itself shows that the concept of number line is not 
simple, although it seems to be so.

By comparing the historical evolution of the 
number line with the difficulties of the students, the 
first critical point seems to be drawn by the separa-
tion between the numbers and the magnitude or the 
separation between the numbers and the straight 
line. The second critical point is drawn by the neg-
ative numbers and the orientation on the number 
line in the positive or the negative direction. The 
above mentioned are reflected both in the historical 
development and in the difficulties of the students, 
also highlighted by Thomaidis & Tzanakis (2007) 
and Heefer (2011). The third critical point is drawn 
by the density of rational numbers and the extra 
unit intervals needed to place them on the line of 
numbers. Finally, the fourth critical point is drawn 
by the density of the irrational numbers, the sepa-
ration of the rational from the irrational numbers 
and the representation of the irrational numbers on 
the number line. The above four critical points are a 
source of difficulty for students as well as adults, and 
we also find them in students’ mistakes.

More research is needed on both the history 
of mathematics and the behavior of students to clar-
ify the nature of these difficulties. If the difficulties 
concerning these critical points comprise epistemo-
logical obstacles in the sense that Brousseau (1983) 
pointed it out, they should be specifically addressed 
by the teaching procedure and should be overcome. 
Teppo & Van den Heuvel-Panhuizen, (2014) pro-
vide some such highlights as well as suggestions for 
the teaching of number lines.



50

Charalampos E. Lemonidis, Anastasios C. Gkolfos

This study examined the students’ difficulties 
regarding mathematical concepts of natural num-
bers, fractions and irrational numbers, where the 
number line is used as a model for teaching. This 
research could be extended to the difficulties of pu-
pils and adults, as well as to other areas of mathe-
matical concepts, where the number line is applied 
as a mathematical concept. Such examples of con-

cepts can be found in geometry, in vector geometry, 
in measurements on lines, in inequations, etc. For 
example, in our research (Lemonidis, 1990, 1991) 
on French high school students we found that they 
encountered serious difficulties when asked to apply 
the geometric transformation of homothety to very 
simple situations, i.e., to a point in a graduated line.
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БРОЈЕВНА ПРАВА У ИСТОРИЈИ МАТЕМАТИКЕ И МАТЕМАТИЧКОМ ОБРАЗОВАЊУ

У овом раду прво представљамо истраживања везана за тему рада и анализирамо 
врсте бројевних правих, а потом представљамо два истраживања у којима су из угла ис-
торијског развоја испитивани елементи бројевне праве, правац простирања и негативни 
бројеви. У раду затим вршимо историјску анализу еволуције појма бројевне праве и пред-
стављамо тешкоће са којима се ученици суочавају приликом њенњ употребе, док кроз при-
каз историјског развоја бројевне праве покушавамо да сагледамо ове тешкоће у односу на 
четири критичне тачке у том развоју.   

1. период. Развој математике до Еуклида: Раздвајање бројева од праве
У античкој Грчкој је у математици постојала јасна разлика између броја и величине. 

Бројеви (природни бројеви) били су једноставне колекције дискретних јединица које су ме-
риле мноштво. С друге стране, величина је обично описивана као непрекидни квантитет 
подељен на делове који се бесконачно може делити. Ова разлика између броја и величине до-
вела је до прављења разлике између аритметике и геометрије. Аритметика се бавила дис-
кретним или ограниченим квантитетом, а геометрија континуираним или проширеним 
квантитетом. Услед ове разлике многи математички проблеми решавани су на различите 
начине. 

2. период. До 16. века: Основе целих бројева – Рационални бројеви – Емпиријска гео-
метрија

У периоду од 12. до 16. века уочава се оријентација ка емпиријској геометрији, као и 
њен однос према методама рачунања и употреби алата за мерење. Михаил Штифел (1487-
1567) је први математичар који је негативне бројеве дефинисао као бројеве мање од нуле, 
а позитивне бројеве као бројеве веће од нуле. Први је и описао нулу, као и рационалне и 
ирационалне бројеве. У току 16. века дошло је до промене класичног схватања појма броја 
и величине. Франсоа Вијет (1540-1603) је увео нове симболе за означавање непознатих вели-
чина и бројева, тврдећи да су бројеви и величине међусобно заменљиви. Из овако схваћеног 
односа између бројева и величина развила се идеја да се бројеви такође могу сматрати кон-
тинуираним, у духу Аристотеловог поимања непрекидности. Међутим, чак и током целог 
овог периода није уведен појам бројевне праве нити је дошло до повезивања сваке тачке са 
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одређеним бројем. Упркос томе, неки математичари су почели да уочавају елементе који 
тако нешто омогућавају.  

3. период. Од 17. до почетка 19. века: Прво повезивање бројева и геометријских дужи 
- алгебаризација геометрије

Идеја о бројевној правој није заживела међу математичарима све до краја 16. века. 
Међутим, појам бројевне праве почиње да се појављује у радовима неких од пионира мате-
матике у 17. веку. Џон Вaлис (1685) је први употребио бројевну праву у свом делу Трактат о 
алгебри (Treatise of Algebra), како би протумачио сабирање и одузимање негативних бројева. 
Развој алгебарских симбола и повезивање криве са њој одговарајућим једначинама довело је 
Декарта до алгебаризације геометрије уз помоћ координатног система. Декарт у свом раду 
не користи термине као што су апсциса, ордината и оса. Декарт није увео појам бројевне 
праве кроз откриће координатног система у свом раду Геометрија (La Géométrie) из 1637. 
године, с обзиром на чињеницу да он никада не спомиње појам осе, нити су осе или систем 
координата приказани на његовим илустрацијама, чак ни онда када јасно одређује вред-
ности појединих величина. Бројевна права се први пут спомиње у првој половини 19. века у 
делу Ернеста Готфрида Фишера (1754-1831). Фишер се бавио неограниченим негативним и 
позитивним квантитетима. Он експлицитно повезује сваку тачку на оси апсцисе са вред-
ностима x и одговарајућу тачку на оси ординате.

4. период. Од почетка 19. века до данас: Формулисање појма бројевне праве
Први покушај да се развије теорија реалних бројева је направљена раних тридесетих 

година 19. века од стране Болцана, који је реалне бројеве видео као граничне вредности ни-
зова рационалних бројева. Отприлике у исто време, Роуан Хамилтон (1805-1865) покушава 
да дефинише реалне бројеве, али није успео да превазиђе логику коју су наметала устаљена 
схватања у геометрији. У свом настојању да заснује гранични рачун искључиво на појму 
броја, Карл Вајерштрас (1855-1897) сматра да треба да дефинише ирационалне бројеве не-
зависно од појма граничне вредности. Стога је сам конвергентни низ сматрао бројем или 
граничном вредношћу и дефинисао је ирационалне бројеве као скупове рационалних бројева, 
пре него уређене низове рационалних бројева. Георг Кантор (1845-1918) је 1871. године ство-
рио нову концепцију броја, сличну са концепцијом Мeрea и Вajeрштраса. У исто време, Хајне 
(1821-1881) је предложио одређена поједностављења која су довела до такозваног Кантор-
Хајнеовог развоја, који подсећа на Мереов у коме конвергентни низови који не конвергирају 
ка рационалним бројевима се узимају као дефиниција ирационалних бројева. 

Дедекинд је покушао да да јасну дефиницију непрекидности, прво за тачке на правој 
линији, а затим и за скуп бројева полазећи од скупа рационалних бројева, а након што је 
приметио да својства поретка рационалних бројева одговарају релацијама између тачака 
на правој линији. Дедекинд је сматрао да се скуп рационалних бројева може проширити 
до непрекидног скупа реалних бројева ако се прихвати Кантор-Дедекиндов принцип према 
коме се тачке на правој линији могу један-један пресликавањем повезати са реалним броје-
вима. Из овога проистиче заснивање бројевне праве у данашњој форми. 
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Пре свега, приметимо да математичка интеграција и заснивање појма бројевне пра-
ве у данашњем смислу се у историји математике одигравала веома споро. Као што смо 
могли да видимо, захваљујући поставкама Дедекинда и Кантора крајем 19. и почетком 20. 
века, ми сада сматрамо да постоји један-један повезивање између тачака на правој и броје-
ва у скупу реалних бројева. То само по себи указује да је, иако појам бројевне праве изгледа 
једноставан за разумевање, за формулисање њеног данашњег облика требало много времена. 

Критичним тачкама у уобличавању појма бројевне праве током историје мате-
матике можемо сматрати раздвајање броја од величине или раздвајање бројева од праве. 
Овакво претходно описано раздвајање се може приметити у грешкама које праве ученици 
који често сагледавају бројеве одвојено од мера на бројевној правој. 

Другу критичну тачку у историјској еволуцији, која такође представља и тешкоћу 
за ученике, чине негативни бројеви и оријентисаност на бројевној правој у позитивном или 
негативном смеру. 

Трећа критична тачка је густина рационалних бројева и додатни јединични ин-
тервали потребни да би се они приказали на бројевној правој. Ово се појавило као проблем 
за ученике када су требали да сместе разломке на бројевној правој, и рационалне бројеве 
уопште, где је неопходно одредити додатне јединичне  интервале као нпр. за интервал ¼ 
чиме би се одредио разломак ¾ на бројевној правој. 

Четврта критична тачка се фокусира на густину ирационалних бројева, раздвоје-
ност рационалних од ирационалних бројева, и представљање ирационалних бројева на 
бројевној правој. 

У овом раду анализирали смо тешкоће које ученици и наставници математике имају 
бавећи се густином и раздвојеношћу рационалних од ирационалних бројева, као и предста-
вљањем ирационалних бројева на бројевној правој. Као што смо раније истакли, и пози-
вајући се на историјске изворе, до идентификовања реалних бројева и њиховог придружи-
вања са тачкама на бројевној правој дошло је врло касно, тек крајем 19. и почетком 20. 
века. 

Kључне речи: бројевна права, историјска еволуција, епистемолошка препрека, 
предтстављање појмова. 


