Every day, contemporary global economy more and more depends on the applicable knowledge and sophisticated skills of learning the employees. Nevertheless, teaching Physics by lectures, in which basis there is “an active teacher who presents the contents of the course to his passive students”, usually does not contribute to knowledge and skills, which the students need. Global effects of this kind of learning and teaching are seen in the following: term knowledge is bad, there is no higher level of contemplation, and skills of solving problems are wrongly interpreted as an algorithmic play based on formulas. According to the research in education, active Physics learning is better than passive learning because it offers students possibilities to learn and improve the mentioned knowledge and skills. The best way to learn physics is the way similar to scientific praxis of real physicians. In other words, this means that active physics learning jeans that students should observe explain and predict physical phenomena.

Active learning physics has been becoming more and more popular in the classroom recently, owing to the examples of the physics design based such as *Workshop physics* by Priscilla Laws, *Peer Instruction* by Eric Mazur, *Student-Cantered Active Learning Environment for University Physics* by Robert Beichner *Technology-Enhanced Active Learning* by John Belcher, *Investigative Science Learning Environment* by Eugenia Etkina and Alan van Huevelen.

Nevertheless, there are two insufficient studied problems concerning planning and implementing of active learning Physics which can lessen efficiency and lasting of the effects of learning. Nevertheless, many students who study physics know little or nothing about the (1) significance of skills at the market and (2) subtle complexity of the process of learning.
Considering the circumstances, students are not motivated enough to change what they do as a routine, memorising way of learning physics, which had been previously formed and enlarged through the experience with lecture type of learning physics. Even when students try to be active and to focus on learning physics, they face many difficulties because of the complexity of human learning.

Possible solutions of these problems lie in possibilities for the students to be informed how significant are the skills of learning in economy based on knowledge and to show to them compressible essence of theory of human learning.

In this paper, we are reporting about the results of the documentary research of the significance of learning skills in economic and compatible literature, so certain arguments are given as well as citations which can be prepared and used, so that students can be convinced how necessary it is to be prepared for lifelong learning.

Considering the theoretical aspect of human learning, readers will find descriptions of phases and different resources necessary for self-regulating learning. Physics teachers should know about these phases and resources, so that they could design multiple possibilities for their students, for exercising and improving self-regulating learning which can have positive effects on academia results.

In this paper, we are also suggesting an original four-phase model, which explicitly helps self-regulating learning, by the Internet and in the classroom. Each special task of learning which can be “solving physics problems”, or “finding explanations for physical phenomenon”, in the first phase in solving problems at home and sending explanations by email, set with difficulties or uncertainties. The second phase is group discussion of personal solutions and the result should be group solution or explanation. Group report is also sent to the teacher by email. The third phase is reading expert opinion or explanation, which a teacher puts on the Facebook of a closed group connected to the course. This sequence is completed by the phase of self-reflection in which students should describe and comprehend good points and difficulties of learning they passed through in the previous three phases. First preliminary results are briefly commented, which were obtained in different implementations of this designed process of self-regulated learning.

Key words: Self-regulated learning, knowledge-based economy, knowledge workers, active physics learning.

Acknowledgement

- The main part of this article was prepared and written during author's sabbatical research project "Active physics learning online" supported by CONACyT Mexico for the period August 2012 – July 2013.
References

