Развијање раног алгебарског мишљења путем визуелно задатих растућих низова код ученика млађих разреда основне школе

Јелена Р. Стојкановић, Гимназија ,,Јосиф Панчић”, Бајина Башта, Србија, имајл: sanjamaricic10@gmail.com
Сања М. Маричић, Универзитет у Крагујевцу, Педагошки факултет, Ужице, Србија
Иновације у настави, XXXVIII, 2025/4, стр. 78–94

 

| PDF | | Extended summary PDF |
DOI: 10.5937/inovacije2504078S

 

Резиме: Циљ рада је да истражи да ли се помоћу визуелно задатих растућих низова може достићи апстрактни ниво мишљења, односно да ли ученици могу да одреде чланове низа на удаљеним позицијама и да ли и колико њих може самостално достићи ниво генерализације. Рад је усмерен на то да утврди да ли ученици, ослањајући се на визуелизацију, могу да уоче правило раста низа, одреде чланове на удаљеним позицијама и формулишу општи члан низа. Истраживање је спроведено на узорку од 252 ученика и обухватило је три задатка, у којима се од ученика захтевало да наставе визуелни образац, нумерички представе односе и симболички изразе генерализацију. Добијени резултати показују да већина ученика успешно уочава правило и одређује удаљене чланове низа, али мало њих успева да симболички запише општи члан, што указује на недовољно развијено разумевање појма променљиве. Визуелна природа задатака подстиче функционално размишљање и омогућава ученицима да остваре напредак ка апстрактном нивоу резоновања. Налази указују на вредност визуелно задатих растућих низова као подршке развоју алгебарског мишљења и сугеришу потребу за њиховом већом заступљеношћу у настави математике у млађим разредима основне школе.

Кључне речи: растући низ, визуелизација, функционална зависност, генерализација

 

Summary: The aim of the paper is to investigate whether, with the help of the visually given growing patterns, an abstract level of thinking can be reached, namely, whether students can determine the members of the sequence at distant positions and whether and how many of them can independently reach the level of generalization. The paper aims to define whether students, relying on visualization, can observe the rule of the growing pattern, determine terms at distant positions, and formulate the general term of the sequence. The research was done on the sample of 252 students and included three tasks requiring students to continue a visual pattern, represent relationships numerically, and express generalization symbolically. The obtained results show that the majority of the students observe the rule and determine the distant members of the sequence successfully, but a small number of them manages to write down the general member symbolically, indicating insufficiently developed understanding of the concept of a variable. The visual nature of the given tasks encourages functional thinking and allows students to make progress towards an abstract level of reasoning. The findings point to the value of visually assigned growing patterns as a support for the development of algebraic thinking and suggest the need for their greater representation in the teaching of mathematics in the lower grades of primary school.

Keywords: growing patterns, visualization, functional dependence, generalization

 

Литература

  • Apsari, R. A., Putri, R. I. I., Sariyasa, Abels, M., & Prayitno, S. (2019). Geometry representation to develop algebraic thinking: A recommendation for a pattern investigation in pre-algebra class. Journal on Mathematics Education, 11(1), 45–58. http://doi.org/10.22342/jme.11.1.9535.45-58
  • Beatty, R. (2007). Young students’ understanding of linear functions: Using geometric growing patterns to mediate the link between symbolic notation and graphs. In T. Lamberg (Ed.). Proceedings of the twenty-ninth annual meeting of the Psychology of Mathematics Education (pp. 148–155). North American Chapter.
  • Billings, E. M. H., Tiedt, T. L. & L. H. Slater (2007). Algebraic thinking and pictorial growth patterns. Teaching Children Mathematics, 14(5), 302–308.
  • Blanton, M., Kaput, J. (2004). Elementary Grades Students’ Capacity for Functional Thinking. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 2, 135–142.
  • Cai, J. et al. (2005). The Development of Students’ Algebraic Thinking in Earlier Grades: A Cross – Cultural Comparative Perspective. ZDM: the international journal on mathematics education, 37(1), 5–15.
  • Cai, J., Ng, D., & Moyer, J. (2005). Developing algebraic thinking in earlier grades. Proceedings of PME, 29(1), 39–66.
  • Carpenter, T. P. & Levi, L. (2000). Developing conceptions of algebraic reasoning in the primary grades. National Center for improving student learning and achievement in mathematics and science.
  • Dabić Boričić, M. M., & Zeljić, M. Ž. (2021). Modelovanje ekvivalencije matematičkih izraza u početnoj nastavi. Inovacije u nastavi, 34(1), 30–43. https://doi.org/10.5937/inovacije2101030D
  • Ferrara, F., & Sinclair, N. (2016). An Early Algebra Approach to Pattern Generalization: Actualizing the Virtual through Words, Gestures and Toilet Paper. Education Study Mathematics, 92, 1–19. https://doi.
    org/10.1007/s10649-015-9674-3
  • Ferryansyah, Widyawati, E., & Rahayu, S. (2018). The analysis of students’ difficulty in learning linear algebra. Journal of Physics: Conference Series, 1028(1). http://dx.doi.org/10.1088/1742-6596/1028/1/012152
  • Friel, S. N., & Markworth, K. A. (2009). A framework for analyzing geometric pattern tasks. MatheMatics Teaching in the Middle School, 15(1), 24–33.
  • Fyfe, E. R. et al. (2017). Relations between Patterning Skill and Differing Aspects of Early Mathematics Knowledge. Cognitive Development, 44, 1–11. https://doi.org/10.1016/j.cogdev.2017.07.003
  • Güler, G. (2016). The difficulties experienced in teaching proof to prospective mathematics teachers: Academician views. Higher Education Studies, 6(1), 145–158. http://dx.doi.org/10.5539/hes.v6n1p145
  • Hourigan, M., & Leavy, A. (2015). Geometric growing patterns: What’s the rule?. Australian Primary Mathematics Classroom, 20(4), 31–39.
  • Jupri, A., Drijvers, P., & Van den Heuvel-Panhuizen, M. (2014). Difficulties in initial algebra learning in Indonesia. Mathematics Education Research Group of Australasia Journal, 26(4), 683–710. http://dx.doi.
    org/10.1007/s13394-013-0097-0
  • Kidd, J. K. et al. (2013). Effects of Patterning Instruction on the Academic Achievement of 1st-Grade Children. Journal of Research on Childhood Education, 27, 224–238. https://doi.org/10.1080/02568543.2013.766664
  • Kieran, C. (2004a). Algebraic Thinking in the Early Grades: What is it?. The Mathematics Educator, 8(1), 139–151.
  • Kieran, C. (2004b). The core of algebraic thinking in the early grades. In K. Stacey, H. Chick & M. Kendal (Eds.). The Future of the Teaching and Learning of Algebra (pp. 39–56). Springer.
  • Lannin, J. K. (2005). Generalization and justification: The challenge of introducing algebraic reasoning through patterning activities. Mathematical Thinking and Learning, 7(3), 231–258. https://doi.org/10.1207/
    s15327833mtl0703_3
  • Lee, L., & Freiman, V. (2006). Developing Algebraic Thinking through Pattern Exploration. MatheMatics Teaching in the Middle School, 11(9), 428–433.
  • Markworth, K. A. (2010). Growing and Growing: Promoting Functional Thinking with Geometric Growing Patterns (unpublished doctoral dissertation). University of North Carolina at Chapel Hill.
  • Markworth, K. A. (2012). Growing patterns: Seeing beyond counting. Teaching Children Mathematics, 19(4), 254–262.
  • Maričić, S., i Milinković, N. (2017). Udžbenik u stvaranju uslova za kontekstualni pristup učenju sadržaja algebre u početnoj nastavi matematike. Zbornik radova, 20(19), 117–130.
  • Moss, J., & London McNab, S. (2011). An approach to geometric and numeric patterning that fosters second grade students’ reasoning and generalizing about functions and co-variation. Early Algebraization, 277–301.
  • Mulligan, J. (2011). Towards Understanding the Origins of Children’s Difficulties in Mathematics Learning. Australian Journal of Learning Difficulties, 16, 19–39. https://doi.org/10.1080/19404158.2011.563476
  • Mulligan, J., & Mitchelmore, M. C. (2009). Awareness of Pattern and Structure in Early Mathematical Development. Mathematics Education Research Journal, 21(2), 33–49. https://doi.org/10.1007/BF03217544
  • Nguyen, T. et al. (2016). Which Preschool Mathematics Competences Are Most Predictive of Fifth Grade Achievement? Early Childhood Research Quarterly, 36, 550–560. https://doi.org/10.1016/j.ecresq.2016.02.003
  • Papic, M. (2015). An Early Mathematical Patterning Assessment: Identifying Young Australian Indigenous Children’s Patterning Skills. Mathematics Education Research, 27, 519–534. https://doi.org/10.1007/s13394-015-0149-8
  • Rittle-Johnson, B. et al. (2016). Early Math Trajectories: Low-Income Children’s Mathematics Knowledge from Ages 4 to 11. Child Development, 88, 1727–1742. https://doi.org/10.1111/cdev.12662
  • Rivera, F. & Becker, J. (2008). From Patterns to Algebra: The Development of Generalized Thinking. ZDM, 40(1). https://doi.org/10.1007/s11858-007-0068-6
  • Romano, D. (2009). Šta je algebarsko mišljenje?. MAT-KOL(Banja Luka), 15(2), 19–29.
  • Stalo, M. et al. (2006). Levels of understanding of patterns in multiple representations. In Novotná, J., Moraová, H., Krátká, M., & Stehlíková, N. (Eds.). Proceedings 30th Conference of the International Group for
    the Psychology of Mathematics Education, Vol. 4 (pp. 161–168). PME.
  • Warren, E., & Cooper, T. J. (2006а). Using repeating patterns to explore functional thinking. APMC, 11(1), 9–14.
  • Warren, E., & Cooper, T. (2006b). Developing functional thinking through growing patterns. In Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1 (pp.39–66). PME.
  • Warren, E., & Cooper, T. J. (2008). Generalising the pattern rule for visual growth patterns: Actions that support 8 year olds’ thinking. Educational Studies in Mathematics, 67, 171–185.
  • Wilkie, K. J., & Clarke, D. (2016). Developing Students’ Funcional Thinking in Algebra through Different Visualisations of a Growing Pattern’s Stricture. Mathematics Education Research Journal, 28(2), 223–243.
    https://doi-org.ezp.sub.su.se/10.1007/s13394-015-0146-y
  • Zeljić, M. (2014). Metodički aspekti rane algebre. Učiteljski fakultet.
    Zeljić, M. (2021). Učenje i poučavanje matematike – jednakost sa više (ne)poznatih. Učiteljski fakultet.

 

Copyright © 2025 by the publisher Faculty of Education, University of Belgrade, SERBIA. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original paper is accurately cited.

Language selection
Open Access Statement
345 Open access declaration can be found on this page

Information about copyright 345 Teaching Innovations are licensed with Creative Commons Attribution License (CC BY 4.0). Information about copyright can be found on this page.
Open Access Journal
345
Indexed by
345 This journal was approved on 2018-01-22 according to ERIH PLUS criteria for inclusion. Download current list of ERIH PLUS approved journals.
Indexed by
345 University of Belgrade, Teacher Education Faculty has entered into an electronic licensing relationship with EBSCO Information Services, the world's most prolific aggregator of full text journals, magazines and other sources. The full text of Teaching Innovations / Inovacije u nastavi is available now on EBSCO's international research databases.
Indexed by
345
Ethics statement
345 Publication ethics and publication malpractice statement can be found on this page.
Follow Teaching Innovations
345   345   345