Перцепције геометријског концепта правоугаоника студената учитељског програма

Даниел A. Романо, Универзитет у Источном Сарајеву, Педагошки факултет Бијељина, Босна и Херцеговина, имејл: bato49@hotmail.com
Иновације у настави, XXX, 2017/2 стр. 158–171

| PDF | | Extended summary PDF |
doi: 10.5937/inovacije1702158R

 

Резиме: У овом тексту представљамо део истраживања перцепције геометријског концепта правоугаоника студената учитељског програма. Та перцепција се односи на парадигме: посебна математичка знања о правоугаоницима неопходна реализаторима наставе математике; посебна методичка о томе како би требало подучавати ученике о правоугаонику у нижим разредима основне школе; и способности разумијевања процеса подучавања и ученичког учења о концепту ове геометријске фигуре. Понуђени садржај представља парцијални извјештај о реализацији пројекта „Установљавање нивоа математичке писмености“, који реализује Научно друштво математичара Бања Лука. Требало би да резултати овог истраживања буду подршка академској заједници у преговорима са друштвеном заједницом о квалитету математичког и методичког образовања будућих реализатора наставе математике у нижим разредима основне школе у нас.
Кључне ријечи: геометријски концепт правоугаоника, Ван Хилеови нивои, студентска перцепција правоугаоника.
Summary: In this article we offer the research data on the perception of the geometric concept of rectangle by pre-service primary school teachers. This perception refers to the following paradigms: the specific mathematical knowledge of rectangles necessary for teachers; the special methodological knowledge about how rectangles shoud be taught to elementary school students; and the ability to understand the process of teaching and student learning about the concept of this geometric figure. The content of this article is a partial report on the implementation of the project “Establishment of the levels of mathematical literacy” implemented by the Scientific Society of Mathematicians in Banja Luka. The results of this study should be suport to academic community in the negotiations with the social community about the quality of mathematical and methodological education of the pre-service primary school teachers in our educational system.
Keywords: geometric concept of a rectangle, Van Hiellel’s levels, students’ perception of a rectangle.

Литература

  • Aytekin, C. & Toluk Ucar, Z. (2011). Teachers’ definition of square, rectangle, parallelogram and trapezoid. In: Uduz, B. (Ed.) Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 1 (254). Middle East Technical University, Ankara, Turkey: PME.
  • Ball, D. L. & Sleep, L. (2007). What is mathematical knowledge for teaching, and what are features of tasks that can be used to develop MKT? Presentation at the Center for Proficiency in Teaching Mathematics presession at the meeting of the Association of Mathematics Teacher Educators, Irvine, CA, January 25, 2007.
  • Ball, D., Bass, H., Sleep, L. & Thames, M. (2005). A theory of mathematical knowledge for teaching. Paper prepared for work session at the 15th ICMI Study Conference: The Professional Education and Development of Teachers of Mathematics. Brazil: Aguas de Lindoia.
    Crvenković, S., Milovanović, M., Romano, D. A. (2012). Neke dileme i pitanja koja se prirodno pojavljuju pri uvođenju pojma „ugao“ u nižim razredima osnovne škole. IMO – istraživanje matematičkog obrazovanja. IV (7), 17–30.
  • Crvenković, S., Milovanović, M., Romano, D. A. (2012а). Uporedna analiza prirode matematičkih znanja kojа se koriste i konstruišu u učionici. Norma. 17 (2), 133–154.
  • De Villiers, M. (1994). The Role and Function of a Hierarchical Classification of Quadrilaterals. For the Learning of Mathematics. 14, 11–18.
  • Dreyfus, T. (2007). Processes of abstraction in context the nested epistemic actions model. Retrieved May 13, 2017 from: http://escalate.org.il/construction_knowledge/papers/dreyfus.pdf.
  • Dubinsky, D. & McDonald, M. A. (2002). APOS: A Constructivist Theory of Learningin Undergraduate Mathematics Education Research. In: Holton, D. et al. (Eds). The Teaching and Learning of Mathematics at University Level, 7 (275–282). New ICMI Study Series. Springer, Dordrecht.
  • Franke, M. (2007). Didaktik der Geometrie in der Grundschule – Mathematik Primar- und Sekundarstufe. 2. Auflage. München: Spektrum Verlag.
  • Fujita, T. (2012). Learners’ Level of Understanding of Inclusion Relations of Quadrilaterals and Prototype Phenomenon. The Journal of Mathematical Behavior. 31, 60–72.
  • Fujita, T. & Jones, K. (2007). Learners’ understanding of the definitions and hierarchical classification of quadrilaterals: towards a theoretical framing. Research in Mathematics Education. 9 (1–2), 3–20.
  • Hershkowitz, R., Schwarz, B. B. & Dreyfus, T. (2001). Abstraction in contexts: Epistemic actions. Journal for Research in Mathematics Education. 32 (2), 195–222.
  • Hershkowitz, R., Schwarz, B. B., Dreyfus, T. & Hadas, N. (2004). Abstracting Processes, from Individuals’ Constructing of Knowledge to a Group’s „Shared Knowledge“. Mathematics Education Research Journal. 19 (2), 41–68.
  • National Research Council (2001). Adding it up: Helping children learn mathematics. Kilpatrick, J., Swafford, J. & Findell, B. (Еds.). Mathematics Learning Study Committee, Center for Education, Division of Behavioral and Social Sciences and Education. Washington, DC: National Academy Press.
  • Romano, D. A. (2009). O geometrijskom mišljenju. Nastava matematike. LIV (2–3), 1–11.
  • Romano, D. A., Vinčić, M. (2013). Šta je duž – jedno istraživanje aspekata budućih učitelja. Naša škola. 63 (233), 139–156.
  • Romano, D. A. (2014). АPOS teorija – poseban aspekt razumijevanja pojava u matematičkom obrazovanju. Norma. 19 (1), 133–141 .
  • Sfard, A. (1991). On the Dual Nature of Mathematical Conceptions: Reflections on Processes and Objects as Different Sides of the Same Coin. Educational Studies in Mathematics. 22 (1), 1–36.
  • Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching. 77, 20–26.
  • Türnüklü, R., Akkaş, E. N. & Alayli, F. G. (2013). Mathematics Teachers’ Perceptions of Quadrilaterals and Understanding the Inclusion Relations. In: Ubuz, B., Haser, Ç. and Mariotti, M. A. (Eds.). Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education (705–714). Ankara: Middle East Technical University.
  • Türnüklü, R., Alayli F. G. & Akkaş, E. N. (2013a). Investigation of Prospective Primary Mathematics Teachers’ Perceptions and Images for Quadrilaterals. Educational Sciences: Theory & Practice. 13 (2), 1225–1232.
  • Van Hiele, P. M. (1986). Structure and Insight. New York: Academy Press.
  • Yackel, E. & Cobb, P. (1996). Sociomathematical norms, argumentation and autonomy in mathematics. Journal for Research in Mathematics Education. 27 (4), 390–408.
  • Zazkis, R. & Leikin, R. (2008). Exemplifying definitions: a case of a square. Educational Studies in Mathematics. 69 (2), 131–148.
  • Zeljić, М. (2006). Matematički okviri za razradu matematičkih pojmova. Inovacije u nastavi. 19 (2), 49–56.
Избор језика
Open Access Statement
345 Open access declaration can be found on this page

Information about copyright 345 Teaching Innovations are licensed with Creative Commons Attribution License (CC BY 4.0). Information about copyright can be found on this page.
Open Access Journal
345
Индексирано у
345   This journal was approved on 2018-01-22 according to ERIH PLUS criteria for inclusion. Download current list of ERIH PLUS approved journals.
Индексирано у
345 University of Belgrade, Teacher Education Faculty has entered into an electronic licensing relationship with EBSCO Information Services, the world's most prolific aggregator of full text journals, magazines and other sources. The full text of Teaching Innovations / Inovacije u nastavi is available now on EBSCO's international research databases.
Индексирано у
345
Ethics statement
345 Publication ethics and publication malpractice statement can be found on this page.
Пратите Иновације у настави
345   345   345