Ставови ученика четвртог разреда основне школе о учењу на часовима геометрије

Оливера Ј. Ђокић, Универзитет у Београду, Учитељски факултет, имејл: olivera.djokic@uf.bg.ac.rs
Иновације у настави, XXXII, 2019/1, стр. 30–52

| PDF | | Extended summary PDF |
doi: 10.5937/inovacije1901030D

 

Резиме: Овај рад представља наставак истраживања о наставном приступу Реалистично математичко образовање (РМО) као другом циклусу у сукцесивном моделу микс-методског приступа. У првом циклусу у квазиексперименталном истраживању са паралелним групама ученици експерименталне групе учили су по наставном приступу реално окружење, док су ученици контролне групе учили по традиционалном наставном приступу. Како су ефекти РМО приступа потврђени, овај рад има за циљ да утврди да ли се у  социоконструктивистичком окружењу и оквирима теорије РМО, у којем учитељ и уџбеник имају кључне улоге у конструисању знања, може утицати на ставове ученика о учењу у настави геометрије. Упитником отвореног типа испитали смо ставове сто четрдесет девет ученика четвртог разреда основне школе о учењу на часовима геометрије. Из упитника добијени искази ученика о учењу су индуктивно издвојени у категорије и кодове, на чије смо димензије значења указали, а затим смо податке обрађивали хи-квадрат техником за поређење учесталости појављивања категорија у двема групама и проверавали смо статистичку значајност добијених разлика. Резултати показују да наставни приступ реално окружење ученици доживљавају пријатним за учење, осећају се спремнији за учење, и то за учење са разумевањем, имају изражену потребу за активним учешћем у настави, радо прихватају иновативни модел уџбеника из којега уче. Отворили смо и питања за даља истраживања у иновативним наставним приступима у дужем временском периоду како бисмо испитали ефекте дугорочног вредновања математике од стране ученика.

Кључне речи: ставови ученика, димензије учења, настава геометрије, Реалистично математичко образовање (РМО), наставни приступ реално окружење.

 

Summary: This paper presents the continuation of the research on the teaching approach of Realistic mathematics education (RME) as the second cycle in a successive model of a mixed-method approach. In the first cycle, in the quasi-experimental research with parallel groups, the pupils in the experimental group were taught by using the realistic environment approach, while the pupils in the control group were taught by using the traditional teaching approach. As the effects of the RME approach have been confirmed, this paper aims to determine whether the socio-constructivist environment within the framework of the RME theory, in which a teacher and a textbook play the key role in the construction of knowledge, can have an effect on pupils’ attitudes towards learning in geometry classes. Using an open-ended questionnaire, we examined the views of one hundred forty-nine pupils of the fourth grade of primary school on learning at geometry classes. The responses were inductively classified into categories and codes, the meaning of which had been previously indicated, and then we processed the data by using the chi-square technique for comparing the frequency of occurrence of the categories in two groups. We also checked the statistical significance of the obtained differences. The results show that pupils find the realistic environment approach to learning very agreeable, they are more willing to learn, especially to learn with understanding, they have a strong need for active participation in classes, and that they readily accept the innovative model of the textbook from which they learn. We also raised some questions for further research of innovative teaching approaches over a longer period of time to examine the effects of the pupils’ long-term evaluation of mathematics.

Кeywords: pupils’ attitudes, dimensions of learning, geometry teaching, Realistic mathematics education (RME), realistic environment teaching approach.

 

Литература

  • Antonijević, R. M., Bojović, I. M. (2017). Pristupi procenjivanju nivoa i kvaliteta motivacije za učenje. Nastava i vaspitanje. 61 (1), 23–36. DOI: 10.5937/nasvas1701022A.
  • Arsaythamby, V. & Zubainur, C. M. (2014). How A Realistic Mathematics Educational Approach Affect Students’ Activities In Primary Schools? Procedia – Social and Behavioral Science. 159, 309–313. DOI:10.1016/j.sbspro.2014.12.378.
  • Batchelor, S., Torbeyns, J. & Verschaffel, L. (2019). Affect and mathematics in young children: an introduction. Educational Studies in Mathematics. 100 (3), 201–209. DOI: 10.1007/s10649-018-9864-x.
  • Baucal, A., Pavlović-Babić, D., Đurić, V., Tošković, O., Radišić, J., Stanković, D. i Buđevac, N. (2009). Školska motivacija učenika u Srbiji (neobjavljeni istraživački izveštaj). Beograd, Srbija: ZVKOV.
  • Bryman, A. (2012). Social Research Methods (4th edition). Oxford, UK: Oxford University Press.
  • Cai, J. (2003). What research tells us about teaching mathematics through problem solving. In: Lester, F. (Ed.). Research and issues in teaching mathematics through problem solving (241–254). Reston, VA: National Council of Teachers of Mathematics.
  • Cobb, P., Zhao, Q. & Visnovska, J. (2008). Learning from and Adapting the Theory of Realistic Mathematics education. Éducation et didactique. 2 (1), 105–124. DOI: 10.4000/educationdidactique.276.
  • Cooper, H., Lindsay, J. J., Nye, B. & Greathouse, S. (1998). Relationships Among Attitudes About Homework, Amount of Homework Assigned and Completed, and Student Achievement. Journal of Educational Psychology. 90 (1), 70–83. DOI: 10.1037/0022-0663.90.1.70.
  • Creswell, J. W. (2014). Research design: Qualitative, Quantitative, and Mixed Methods Approaches (4th edition). SAGE Publications, Inc.
  • De Corte, E., Verschaffel, L. & Depaepe, F. (2008). Unraveling the Relationship Between Students’ Mathematics–Related Beliefs and the Classroom Culture. European Psychologist. 13 (1), 24–36. DOI:10.1027/1016-9040.13.1.24.
  • De Corte, E., Op’t Eynde, P., Depaepe, F. & Verschaffel, L. (2010). The reflexive relation between students’ mathematics-related beliefs and the mathematics classroom culture. In: Bendixen, L. D. & Feucht, F. C.
  • (Eds.). Personal Epistemology in the Classroom. Theory, Research, and Implications for Practice (292–327). Cambridge, UK: University Press.
  • De Moor, E. W. A. (1999). From ‘Vormleer’ to Realistic Geometry. Utrecht, Netherlands: Utrecht: CD–β Press / Freudenthal Institute, Utrecht University.
  • Đokić, O. (2014). Realno okruženje u početnoj nastavi geometrije. Inovacije u nastavi. 27 (2), 7–21. DOI:10.5937/inovacije1402007D.
  • Đokić, O. (2015a). Rezultati analize udžbenika matematike i zadaci primene znanja u geometriji. U: Radišić, J., Buđevac, N. i Stanković, D. (ur.). Doprinos istraživačkih nalaza unapređenju obrazovne prakse (rad štampan u celini) (42–47). 8. april 2015, Beograd. Beograd, Srbija: Zavod za unapređivanje obrazovanja i vaspitanja.
  • Đokić, O. (2015b). The Effects of RME and Innovative Textbook Model on 4th Grade Pupils’ Reasoning in Geometry. In: Novotná, J. & Moraová, H. (Eds.). Developing mathematical language and reasoning – International Symposium Elementary Mathematics Teaching SEMT–2015 (Full Papers) (107–117). August 16th‒21st 2015, Prague. Prague, Czech Republic: Charles University.
  • Fauth, B., Decristan, J., Rieser, S., Klieme, E. & Büttner, G. (2014). Student ratings of teaching quality in primary school: Dimensions and prediction of student outcomes. Learning and Instruction. 29, 1–9. DOI:10.1016/j.learninstruc.2013.07.001.
  • Fauzan, A., Slettenhaar, D. & Plomp, T. (2002). Traditional mathematics education Vs realistic mathematics education: Hoping for changes. In: Valero, P. & Skovsmose, O. (Eds.). 3rd International Mathematics Education and Society Conference (Full Papers) (1–4). April 2nd 2002, Enschede. Copenhagen, Denmark: Centre for Researh in Learning Mathematics.
  • Frenzel, A. C., Pekrun, R. & Goetz, T. (2007). Perceived learning environment and students’ emotional experiences: A multilevel analysis of mathematics classrooms. Learning and Instruction. 17 (5), 478–493. DOI: 10.1016/j.learninstruc.2007.09.001.
  • García, T., Rodríguez, C., Betts, L., Areces, D. & González-Castro, P. (2016). How affective-motivational variables and approaches to learning predict mathematics achievement in upper elementary levels. Learning and Individual Differences. 49, 25–31. DOI: 10.1016/j.lindif.2016.05.021.
  • Goldin, G. A. et al. (2016). Attitudes, Beliefs, Motivation and Identity in Mathematics Education – an Overview of the Field and Future Directions ICME–13 Topical Surveys. Springer Open. DOI: 10.1007/978-3-319-32811-9_1.
  • Hannula, M. S. (2006). Motivation in Mathematics: Goals Reflected in Emotions. Educational Studies in Mathematics. 63 (2), 165–178. DOI: 10.1007/s10649-005-9019-8.
  • Hershkowitz, R. (1998). Reasoning in Geometry. In: Mammana, C. & Villani, V. (Eds.). Perspectives on the Teaching of Geometry for the 21st Century (29–83). Springer: Kluwer Academic Publishers. DOI: 10.1007/978-94-011-5226-6.
  • Hunter, R., Hunter, J., Jorgensen, R. & Choy, B. H. (2016). Innovative and Powerful Pedagogical Practices in Mathematics Education. In: Makar, K., Dole, S., Visnovska, J., Goos, M., Bennison, A. & Fry, K. (Eds.). Research in Mathematics Education in Australasia 2012‒2015. Comprehensive overview of mathematics education research in Australasia between 2012–2015 (213–234). Singapore: Springer. DOI: 10.1007/978-981-10-1419-2_11.
  • Järvelä, S. (2001). Shifting research on motivation and cognition to an integrated approach on learning and motivation in context. In: Volet, S. & Järvelä, S. (Eds.). Motivation in learning contexts: Theoretical advances and methodological implications (3–14). London, UK: Pergamon/Elsevier.
  • Lalić Vučetić, N. Z., Mirkov, S. I. (2017). Motivacija za učenje, opažanje postupaka učitelja i doživljaj samoefikasnosti učenika u matematici i prirodnim naukama. Inovacije u nastavi. 30 (2), 29–48. DOI:10.5937/inovacije1702029L.
  • Lambić, D. & Lipkovski, A. (2012). Measuring the Influence of Students’ Attitudes on the Process of Acquiring Knowledge in Mathematics. Croatian Journal of Education. 14 (1), 187–205.
    •• Laurens, Т., Batlolona, F. A., Batlolona, J. R. & Leasa, М. (2018). How Does Realistic Mathematics Education (RME) Improve Students’ Mathematics Cognitive Achievement? EURASIA Journal of Mathematics, Science and Technology Education. 14 (2), 569–578. DOI: 10.12973/ejmste/76959.
  • Leder, G. C. (2015). From Hidden Dimensions to Dynamic Systems in Affect Research. In: Pepin, B. & Roesken-Winter, B. (Eds.). From beliefs to dynamic affect systems in mathematics education ‒ Exploring a mosaic of relationships and interactions (V–X). Springer International Publishing. DOI: 10.1007/978-3-319-06808-4.
  • Matović, N. (2015). Kombinovano istraživanje u pedagogiji: karakteristike, prednosti i teškoće u primeni. Zbornik Instituta za pedagoška istraživanja. 47 (1), 7–22. DOI: 10.2298/ZIPI1501007M.
  • Mayring, P. (2015). Qualitative Content Analysis: Theoretical Background and Procedures. In: Bikner-Ahsbahs, A., Knipping, C. & Presmeg, N. (Eds.). Approaches to Qualitative Research in Mathematics Education – Examples of Methodology and Methods (365–380). Heidelberg, Germany: Springer. DOI: 10.1007/978-94-017-9181-6_13.
  • McCombs, B. L. (2014). Using a 360 degree assessment model to support learning to learn. In: Deakin-Crick, R., Small, T. & Stringher, C. (Eds.). Learning to learn for all: theory, practice and international research: A multidisciplinary and lifelong perspective (241–270). London, UK: Routledge.
  • Op’t Eynde, P., De Corte, E. & Verschaffel, L. (2002). Framing Students’ Mathematics-Related Beliefs. In: Leder, G. C., Pehkonen, E. & Törner G. (Eds.). Beliefs: A Hidden Variable in Mathematics Education? (13–37). Dordrecht, Netherlands: Kluwer Academic Publishers. DOI: 10.1007/0-306-47958-3_2.
  • Op’t Eynde, P., De Corte, E. & Verschaffel, L. (2006). „Accepting Emotional Complexity“: A Socio-Constructivist Perspective on the Role of Emotions in the Mathematics Classroom. Educational Studies in Mathematics. 63 (2), 193–207. DOI: 10.1007/s10649-006-9034-4.
  • Romberg, T. A. (2003). Creating a Research Community in Mathematics Education – WCER Working Paper No. 2003–10. University of Wisconsin–Madison, USA: Wisconsin Center for Education Research.
  • Schoenfeld, A. H. (1989). Problem Solving in Context(s). In: Charles, R. I. & Silver, E. A. (Eds.). The Teaching and Assessing of Mathematical Problem Solving – Research Agenda for Mathematics Education, Vol. 3 (82–92.). Lawrence Erlbaum Associates and National Council of Teachers of Mathematics.
  • Ševkušić, S. G. (2011). Kvalitativna istraživanja u pedagogiji: doprinos različitih metodoloških pristupa. Beograd, Srbija: Institut za pedagoška istraživanja.
  • Ševkušić, S. G. (2017). Školska klima kao kulturni resurs: mogućnosti njenog merenja i unapređivanja. U: Marinković, S. (ur.). Kulturno-potporna sredstva u funkciji nastave i učenja (rad štampan u celini) (15–30). 3.novembar 2017, Užice. Užice, Srbija: Pedagoški fakultet.
  • Tarr, J. E., Reys, R. E., Reys, B. J., Chávez, Ó., Shih, J. & Osterlind, S. J. (2008). The Impact of Middle-Grades Mathematics Curricula and the Classroom Learning Environment on Student Achievement. Journal for Research in Mathematics Education. 39 (3), 247–280. DOI: 10.2307/30034970.
  • Towers, J., Takeuchi, M. A. & Martin, L. C. (2018). Examining contextual influences on students’ emotional relationships with mathematics in the early years. Research in Mathematics Education. 20 (2), 146–165. DOI: 10.1080/14794802.2018.1477058.
  • Törner, G. (2014). The Affective Domain. In: Andrews, P. & Rowland, T. (Eds.). MasterClass in Mathematics Education – International Perspectives on Teaching and Learning (63–74). London, UK: Bloomsbury Academic.
  • Van den Heuvel-Panhuizen, M. (2000). Mathematics education in the Netherlands: A guided tour. Freudenthal Institute Cd-rom for ICME9. Utrecht: Utrecht University.
  • Van den Heuvel-Panhuizen, M. (2010). Reform Under Attack ‒ Forty Years of Working on Better Mathematics Education Thrown on the Scrapheap? No Way! In: Sparrow, L., Kissane, B. & Hurst, C. (Eds.). Shaping the future of mathematics education: Proceedings of the 33rd annual conference of the Mathematics Education Research Group of Australasia (Full paper) (1–25). July 3rd–7th, 2010, Freemantle. Fremantle, Australia: MERGA.
  • Van den Heuvel-Panhuizen, M. & Drijvers, P. (2014). Realistic Mathematics Education. In: Lerman, S. (ed.). Encyclopedia of Mathematics Education (521–525). Dordrecht, Netherlands: Springer Reference. DOI: 10.1007/978-94-007-4978-8.
  • Visnovska, J. & Cortina, J. L. (2018). Resourcing Teachers in Transition to Plan for Interactions with Students’ Ideas. In: Fan, L., Trouche, L., Qi, C., Rezat, S. & Visnovska, J. (Eds.). Research on Mathematics Textbooks and Teachers’ Resources, ICME-13 Monographs (277–295). DOI: 10.1007/978-3-319-73253-4_13.
  • Walshaw, M. (2018). Epistemological Questions About School Mathematics. In: Ernest, P. (ed.). The Philosophy of Mathematics Education Today, ICME–13 Monographs (161–171). Springer International Publishing. DOI: 10.1007/978-3-319-77760-3_10.
Избор језика
Open Access Statement
345 Open access declaration can be found on this page

Information about copyright 345 Teaching Innovations are licensed with Creative Commons Attribution License (CC BY 4.0). Information about copyright can be found on this page.
Open Access Journal
345
Индексирано у
345   This journal was approved on 2018-01-22 according to ERIH PLUS criteria for inclusion. Download current list of ERIH PLUS approved journals.
Индексирано у
345 University of Belgrade, Teacher Education Faculty has entered into an electronic licensing relationship with EBSCO Information Services, the world's most prolific aggregator of full text journals, magazines and other sources. The full text of Teaching Innovations / Inovacije u nastavi is available now on EBSCO's international research databases.
Индексирано у
345
Ethics statement
345 Publication ethics and publication malpractice statement can be found on this page.
Пратите Иновације у настави
345   345   345